1
|
Wang F, Pu C, Ma S, Zhou J, Jiang Y, Yu F, Zhang S, Wu Y, Zhang L, He C, Hu H. The effects of flip angle and gadolinium contrast agent on single breath-hold compressed sensing cardiac magnetic resonance cine for biventricular global strain assessment. Front Cardiovasc Med 2024; 11:1286271. [PMID: 38347952 PMCID: PMC10859435 DOI: 10.3389/fcvm.2024.1286271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Background Due to its potential to significantly reduce scanning time while delivering accurate results for cardiac volume function, compressed sensing (CS) has gained traction in cardiovascular magnetic resonance (CMR) cine. However, further investigation is necessary to explore its feasibility and impact on myocardial strain results. Materials and methods A total of 102 participants [75 men, 46.5 ± 17.1 (SD) years] were included in this study. Each patient underwent four consecutive cine sequences with the same slice localization, including the reference multi-breath-hold balanced steady-state free precession (bSSFPref) cine, the CS cine with the same flip angle as bSSFPref before (CS45) and after (eCS45) contrast enhancement, and the CS cine (eCS70) with a 70-degree flip angle after contrast enhancement. Biventricular strain parameters were derived from cine images. Two-tailed paired t-tests were used for data analysis. Results Global radial strain (GRS), global circumferential strain (GCS), and global longitudinal strain (GLS) were observed to be significantly lower in comparison to those obtained from bSSFPref sequences for both the right and left ventricles (all p < 0.001). No significant difference was observed on biventricular GRS-LAX (long-axis) and GLS values derived from enhanced and unenhanced CS cine sequences with the same flip angle, but remarkable reductions were noted in GRS-SAX (short-axis) and GCS values (p < 0.001). After contrast injection, a larger flip angle caused a significant elevation in left ventricular strain results (p < 0.001) but did not affect the right ventricle. The increase in flip angle appeared to compensate for contrast agent affection on left ventricular GRS-SAX, GCS values, and right ventricular GRS-LAX, GLS values. Conclusion Despite incorporating gadolinium contrast agents and applying larger flip angles, single breath-hold CS cine sequences consistently yielded diminished strain values for both ventricles when compared with conventional cine sequences. Prior to employing this single breath-hold CS cine sequence to refine the clinical CMR examination procedure, it is crucial to consider its impact on myocardial strain results.
Collapse
Affiliation(s)
- Fuyan Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cailing Pu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siying Ma
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feidan Yu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Yan Wu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingjie Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengbin He
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Craft J, Li Y, Nashta NF, Weber J. Comparison between compressed sensing and segmented cine cardiac magnetic resonance: a meta-analysis. BMC Cardiovasc Disord 2023; 23:473. [PMID: 37735355 PMCID: PMC10512640 DOI: 10.1186/s12872-023-03426-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE Highly accelerated compressed sensing cine has allowed for quantification of ventricular function in a single breath hold. However, compared to segmented breath hold techniques, there may be underestimation or overestimation of LV volumes. Furthermore, a heterogeneous sample of techniques have been used in volunteers and patients for pre-clinical and clinical use. This can complicate individual comparisons where small, but statistically significant differences exist in left ventricular morphological and/or functional parameters. This meta-analysis aims to provide a comparison of conventional cine versus compressed sensing based reconstruction techniques in patients and volunteers. METHODS Two investigators performed systematic searches for eligible studies using PubMed/MEDLINE and Web of Science to identify studies published 1/1/2010-3/1/2021. Ultimately, 15 studies were included for comparison between compressed sensing cine and conventional imaging. RESULTS Compared to conventional cine, there were small, statistically significant overestimation of LV mass, underestimation of stroke volume and LV end diastolic volume (mean difference 2.65 g [CL 0.57-4.73], 2.52 mL [CL 0.73-4.31], and 2.39 mL [CL 0.07-4.70], respectively). Attenuated differences persisted across studies using prospective gating (underestimated stroke volume) and non-prospective gating (underestimation of stroke volume, overestimation of mass). There were no significant differences in LV volumes or LV mass with high or low acceleration subgroups in reference to conventional cine except slight underestimation of ejection fraction among high acceleration studies. Reduction in breath hold acquisition time ranged from 33 to 64%, while reduction in total scan duration ranged from 43 to 97%. CONCLUSION LV volume and mass assessment using compressed sensing CMR is accurate compared to conventional parallel imaging cine.
Collapse
Affiliation(s)
- Jason Craft
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, 100 Port Washington Blvd, Roslyn, NY, 11576, USA.
| | - Yulee Li
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, 100 Port Washington Blvd, Roslyn, NY, 11576, USA
| | - Niloofar Fouladi Nashta
- Sol Price School of Public Policy and Leonard D. Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Weber
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, 100 Port Washington Blvd, Roslyn, NY, 11576, USA
| |
Collapse
|
3
|
Saito S, Ueda J. [20. Fundamentals of Myocardial Strain Imaging Using MRI]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:1183-1188. [PMID: 37866902 DOI: 10.6009/jjrt.2023-2267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine
- Department of Advanced Medical Technologies, National Cardiovascular and Cerebral Research Center
| | - Junpei Ueda
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine
| |
Collapse
|