1
|
Kayzuka C, Rondon-Pereira VC, Nogueira Tavares C, Pacheco Pachado M, Monica FZ, Tanus-Santos JE, Lacchini R. Epigenetics is involved in the pleiotropic effects of statins. Expert Opin Drug Metab Toxicol 2025:1-13. [PMID: 40208655 DOI: 10.1080/17425255.2025.2491732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/18/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION Statins have significantly reduced mortality from cardiovascular diseases by lowering serum cholesterol levels. Beyond their lipid-lowering effects, statins improve vascular function, reduce inflammation, decrease reactive oxygen species (ROS) formation, and stabilize atherosclerotic plaques. However, the mechanisms underlying these pleiotropic effects remain unclear. AREA COVERED This narrative review summarizes and discusses epigenetic mechanisms that may explain part of the pleiotropic effects of statins. This approach allows for a reevaluation of statin use beyond its cholesterol-lowering benefits. A structured search was conducted in the PubMed and Scopus databases using specific search terms, including articles published up to August 2024. EXPERT OPINION The pleiotropic effects of statins, including those mediated by the isoprenoid pathway, partially explain their clinical benefits. By inhibiting histone deacetylases (HDACs, the 'erasers') and DNA methyltransferases (DNMTs, the 'writers'), statins promote increased histone acetylation and reduced DNA methylation at gene promoter regions. These epigenetic modifications enhance chromatin accessibility, facilitating gene transcription and protecting the cardiovascular system. Further investigation into these epigenetic mechanisms could support the repositioning of statins for broader therapeutic applications. Statins may have benefits extending beyond their role in managing hypercholesterolemia, as their pleiotropic effects contribute to the prevention of cardiovascular disease-related mortality through mechanisms independent of LDL cholesterol reduction.
Collapse
Affiliation(s)
- Cezar Kayzuka
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Cecilia Nogueira Tavares
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Mayra Pacheco Pachado
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fabiola Zakia Monica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Jose Eduardo Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
2
|
Han W, Wang W, Wang Q, Maduray K, Hao L, Zhong J. A review on regulation of DNA methylation during post-myocardial infarction. Front Pharmacol 2024; 15:1267585. [PMID: 38414735 PMCID: PMC10896928 DOI: 10.3389/fphar.2024.1267585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Myocardial infarction (MI) imposes a huge medical and economic burden on society, and cardiac repair after MI involves a complex series of processes. Understanding the key mechanisms (such as apoptosis, autophagy, inflammation, and fibrosis) will facilitate further drug development and patient treatment. Presently, a substantial body of evidence suggests that the regulation of epigenetic processes contributes to cardiac repair following MI, with DNA methylation being among the notable epigenetic factors involved. This article will review the research on the mechanism of DNA methylation regulation after MI to provide some insights for future research and development of related drugs.
Collapse
Affiliation(s)
- Wenqiang Han
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenxin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qinhong Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Kellina Maduray
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Liu S, Liu X, Lin X, Chen H. Zinc Finger Proteins in the War on Gastric Cancer: Molecular Mechanism and Clinical Potential. Cells 2023; 12:cells12091314. [PMID: 37174714 PMCID: PMC10177130 DOI: 10.3390/cells12091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
According to the 2020 global cancer data released by the World Cancer Research Fund (WCRF) International, gastric cancer (GC) is the fifth most common cancer worldwide, with yearly increasing incidence and the second-highest fatality rate in malignancies. Despite the contemporary ambiguous molecular mechanisms in GC pathogenesis, numerous in-depth studies have demonstrated that zinc finger proteins (ZFPs) are essential for the development and progression of GC. ZFPs are a class of transcription factors with finger-like domains that bind to Zn2+ extensively and participate in gene replication, cell differentiation and tumor development. In this review, we briefly outline the roles, molecular mechanisms and the latest advances in ZFPs in GC, including eight principal aspects, such as cell proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis, inflammation and immune infiltration, apoptosis, cell cycle, DNA methylation, cancer stem cells (CSCs) and drug resistance. Intriguingly, the myeloid zinc finger 1 (MZF1) possesses reversely dual roles in GC by promoting tumor proliferation or impeding cancer progression via apoptosis. Therefore, a thorough understanding of the molecular mechanism of ZFPs on GC progression will pave the solid way for screening the potentially effective diagnostic indicators, prognostic biomarkers and therapeutic targets of GC.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xingzhu Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xin Lin
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Liu X, Zhang J, Li P, Han P, Kang YJ, Zhang W. Gene expression patterns and related pathways in the hearts of rhesus monkeys subjected to prolonged myocardial ischemia. Exp Biol Med (Maywood) 2023; 248:350-360. [PMID: 36814407 PMCID: PMC10159524 DOI: 10.1177/15353702231151968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
After myocardial infarction (MI) occurs, progressive pathological cardiac remodeling results in heart dysfunction and even heart failure during the following months or years. The present study explored the molecular mechanisms underlying the late phase of MI at the global transcript level. A rhesus monkey model of myocardial ischemia induced by left anterior descending (LAD) artery ligation was established, and the heart tissue was collected eight weeks after ligation for transcriptome analysis by DNA microarray technology. Differentially expressed genes in the core infarcted area and remote infarcted area of the ischemic heart were detected with significance analysis of microarray (SAM), and related pathways were detected by Gene Ontology (GO)/pathway analysis. We found that compared to the sham condition, prolonged ischemia increased the levels of 941 transcripts, decreased the levels of 380 transcripts in the core infarcted area, and decreased the levels of 8 transcripts in the remote area in monkey heart tissue. Loss of coordination between the expression of genes, including natriuretic peptide A (NPPA), NPPB, and corin (Corin, serine peptidase), may aggravate cardiac remodeling. Furthermore, imbalance in the enriched significantly changed pathways, including fibrosis-related pathways, cardioprotective pathways, and the cardiac systolic pathway, likely also plays a key role in regulating the development of heart remodeling.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jingyao Zhang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengfei Li
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Pengfei Han
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Wenjing Zhang
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|