1
|
Liu Y, Chen Q, Yang JZ, Li XW, Chen LJ, Zhang KK, Liu JL, Li JH, Hsu C, Chen L, Zeng JH, Wang Q, Zhao D, Xu JT. Multi-Omics Analysis Reveals the Role of Sigma-1 Receptor in a Takotsubo-like Cardiomyopathy Model. Biomedicines 2023; 11:2766. [PMID: 37893138 PMCID: PMC10604683 DOI: 10.3390/biomedicines11102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy that presents with sudden onset of chest pain and dyspneic and cardiac dysfunction as a result of extreme physical or emotional stress. The sigma-1 receptor (Sigmar1) is a ligand-dependent molecular chaperone that is postulated to be involved in various processes related to cardiovascular disease. However, the role of Sigmar1 in TTS remains unresolved. In this study, we established a mouse model of TTS using wild-type and Sigmar1 knockout mice to investigate the involvement of Sigmar1 in TTS development. Our results revealed that Sigmar1 knockout exacerbated cardiac dysfunction, with a noticeable decrease in ejection fraction (EF) and fractional shortening (FS) compared to the wild-type model. In terms of the gut microbiome, we observed regulation of Firmicutes and Bacteroidetes ratios; suppression of probiotic Lactobacillus growth; and a rise in pathogenic bacterial species, such as Colidextribacter. Metabolomic and transcriptomic analyses further suggested that Sigmar1 plays a role in regulating tryptophan metabolism and several signaling pathways, including MAPK, HIF-1, calcium signaling, and apoptosis pathways, which may be crucial in TTS pathogenesis. These findings offer valuable insight into the function of Sigmar1 in TTS, and this receptor may represent a promising therapeutic target for TTS.
Collapse
Affiliation(s)
- Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Qing Chen
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing 100088, China
- Beijing Municipal Public Security Judicial Appraisal Center, Beijing 100142, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Dong Zhao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing 100088, China
| | - Jing-Tao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| |
Collapse
|
2
|
Hajra A, Malik A, Bandyopadhyay D, Goel A, Isath A, Gupta R, Krishnan S, Rai D, Krittanawong C, Virani SS, Fonarow GC, Lavie CJ. Impact of COVID-19 in patients hospitalized with stress cardiomyopathy: A nationwide analysis. Prog Cardiovasc Dis 2023; 76:25-30. [PMID: 36528166 PMCID: PMC9749379 DOI: 10.1016/j.pcad.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Stress cardiomyopathy was noted to occur at a higher incidence during coronavirus disease of 2019 (COVID-19) pandemic. This database analysis has been done to compare the in-hospital outcomes in patients with stress cardiomyopathy and concurrent COVID-19 infection with those without COVID-19 infection. The National Inpatient Sample database for the year 2020 was queried to identify all admissions diagnosed with stress cardiomyopathy. These patients were then stratified based on whether they had concomitant COVID-19 infection or not. A 1:1 propensity score matching was performed. Multivariate logistic regression analysis was done to identify predictors of mortality. We identified 41,290 hospitalizations for stress cardiomyopathy, including 1665 patients with concurrent diagnosis of COVID-19. The female preponderance was significantly lower in patients with stress cardiomyopathy and COVID-19. Patients with concomitant COVID-19 were more likely to be African American, diabetic and have chronic kidney disease. After propensity matching, the incidence of complications, including acute kidney injury (AKI), AKI requiring dialysis, coagulopathy, sepsis, cardiogenic shock, cases with prolonged intubation of >24 h, requirement of vasopressor and inpatient mortality, were noted to be significantly higher in patients with COVID-19. Concomitant COVID-19 infection was independently associated with worse outcomes and increased mortality in patients hospitalized with stress cardiomyopathy.
Collapse
Affiliation(s)
- Adrija Hajra
- Department of Internal Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaqib Malik
- Department of Cardiology, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | | | - Akshay Goel
- Department of Cardiology, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Ameesh Isath
- Department of Cardiology, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA
| | - Suraj Krishnan
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Devesh Rai
- Department of Cardiology, Sands-Constellation Heart Institute, Rochester Regional Health, Rochester, NY, USA
| | | | - Salim S Virani
- Michael E. DeBakey Veterans Affairs Medical Center, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
| | - Gregg C Fonarow
- Ahmanson-UCLA Cardiomyopathy Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA., USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| |
Collapse
|
3
|
Angelini P. Acute, Transient Cardiomyopathy in Patients With COVID-19: Can We Clearly and Quickly Diagnose Its Cause and Nature? Tex Heart Inst J 2022; 49:488732. [PMID: 36450142 PMCID: PMC9809084 DOI: 10.14503/thij-22-7960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Paolo Angelini
- Department of Cardiology, Texas Heart Institute, Houston, Texas
| |
Collapse
|
4
|
Knez R, Niksic M, Omerovic E. Orexin/hypocretin system dysfunction in patients with Takotsubo syndrome: A novel pathophysiological explanation. Front Cardiovasc Med 2022; 9:1016369. [PMID: 36407467 PMCID: PMC9670121 DOI: 10.3389/fcvm.2022.1016369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Takotsubo syndrome (TTS) is an acute heart failure syndrome. Emotional or physical stressors are believed to precipitate TTS, while the pathophysiological mechanism is not yet completely understood. During the coronavirus disease (COVID-19) pandemic, an increased incidence of TTS has been reported in some countries; however, the precise pathophysiological mechanism for developing TTS with acute COVID-19 infection is unknown. Nevertheless, observing the symptoms of COVID-19 might lead to new perspectives in understanding TTS pathophysiology, as some of the symptoms of the COVID-19 infection could be assessed in the context of an orexin/hypocretin-system dysfunction. Orexin/hypocretin is a cardiorespiratory neuromodulator that acts on two orexin receptors widely distributed in the brain and peripheral tissues. In COVID-19 patients, autoantibodies against one of these orexin receptors have been reported. Orexin-system dysfunction affects a variety of systems in an organism. Here, we review the influence of orexin-system dysfunction on the cardiovascular system to propose its connection with TTS. We propose that orexin-system dysfunction is a potential novel explanation for the pathophysiology of TTS due to direct or indirect dynamics of orexin signaling, which could influence cardiac contractility. This is in line with the conceptualization of TTS as a cardiovascular syndrome rather than merely a cardiac abnormality or cardiomyopathy. To the best of our knowledge, this is the first publication to present a plausible connection between TTS and orexin-system dysfunction. We hope that this novel hypothesis will inspire comprehensive studies regarding orexin's role in TTS pathophysiology. Furthermore, confirmation of this plausible pathophysiological mechanism could contribute to the development of orexin-based therapeutics in the treatment and prevention of TTS.
Collapse
Affiliation(s)
- Rajna Knez
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Research and Development, Department of Women's and Child Health, Skaraborg Hospital, Skövde, Sweden
- Institution for Health, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Milan Niksic
- Department of Cardiology, Skaraborg Hospital, Skövde, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Finsterer J, Mehri S. The diagnosing of pediatric severe acute respiratory syndrome coronavirus 2 associated myocarditis requires validated criteria. Pediatr Int 2022; 64:e15393. [PMID: 36269205 PMCID: PMC9874621 DOI: 10.1111/ped.15393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Affiliation(s)
| | - Sounira Mehri
- Biochemistry Laboratory, Faculty of Medicine, LR12ES05 "Nutrition-Functional Foods and Vascular Health", Monastir, Tunisia
| |
Collapse
|