1
|
Gao N, Li J, Wei T, Cheng Q, Gao S, Hu Y. Discovery and exploration of adaptive immune response-related drug targets in diabetic retinopathy by Mendelian randomization. Diabetes Res Clin Pract 2025; 220:111987. [PMID: 39805382 DOI: 10.1016/j.diabres.2025.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Persistent diabetes raises diabetic retinopathy (DR) risk, and management is challenging. Integrating transcriptomics and MR, this study provides a current reference for the clinical treatment of DR by identifying potential drug targets in adaptive immune response-associated genes (AIR-RGs). METHODS The GSE102485 dataset about AIR-RGs and DR was downloaded from a public database. Initially, the MR and Steiger test identified AIR-related candidate genes with causal associations to DR. Bayesian co-localization analysis pinpointed DR drug targets, followed by phenotype scanning for side effects. Functional enrichment and immune infiltration analyses elucidated target mechanisms in DR. RESULTS Identified 27 AIR-RGs associated with DR, with TRAV23DV6 (OR = 1.367, 95 % CI = 1.005-1.859, p = 0.0046) as a risk factor. Co-localization analysis confirmed TRAV23DV6's potential as a DR drug target. Phenotype scanning linked TRAV23DV6 to hepatocellular carcinoma, thromboembolism, and pyelonephritis, indicating potential side effects. TRAV23DV6 engages in adaptive immunity, autophagy, and antigen binding. DR involves infiltration of 22 immune cell types and activation of 16 immune functions related to TCR, BCR pathways, and TNF family. Correlation analysis shows high TRAV23DV6 expression, immune cell infiltration, and function activation may exacerbate DR. CONCLUSION TRAV23DV6 has been identified as a potential drug target for DR, offering a new perspective for the treatment of this condition.
Collapse
Affiliation(s)
- Ning Gao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jingming Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ting Wei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Qiaochu Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
2
|
Sarı-Tunel F, Demirkan A, Vural B, Yıldız CE, Komurcu-Bayrak E. Omics Data Integration Uncovers mRNA-miRNA Interaction Regions in Genes Associated with Chronic Venous Insufficiency. Genes (Basel) 2024; 16:40. [PMID: 39858587 PMCID: PMC11765502 DOI: 10.3390/genes16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Chronic venous insufficiency (CVI), a chronic vascular dysfunction, is a common health problem that causes serious complications such as painful varicose veins and even skin ulcers. Identifying the underlying genetic and epigenetic factors is important for improving the quality of life of individuals with CVI. In the literature, many genes, variants, and miRNAs associated with CVI have been identified through genomic and transcriptomic studies. Despite molecular pathogenesis studies, how the genes associated with CVI are regulated by miRNAs and the effect of variants in binding regions on expression levels are still not fully understood. In this study, previously identified genes, variants, and miRNAs associated with CVI, common variants in the mRNA-miRNA binding regions, were investigated using in silico analyses. Methods: For this purpose, miRNA research tools, MBS (miRNA binding site) database, genome browsers, and the eQTL Calculator in the GTEx portal were used. Results: We identified SNVs associated with CVI that may play a direct role in the miRNA-mediated regulation of the ZNF664, COL1A2, HFE, MDN, MTHFR, SRPX, TDRD5, TSPYL4, VEGFA, and APOE genes. In addition, when the common SNVs in the mRNA binding region of 75 unique CVI related-miRNAs in five candidate genes associated with CVI were examined, seven miRNAs associated with the expression profiles of ABCA1, PIEZO1, and CASZ1 genes were identified. Conclusions: In conclusion, the relationship between genetic markers identified in the literature that play a role in the pathogenesis of the CVI and the expression profiles was evaluated for the first time in the mRNA-miRNA interaction axis.
Collapse
Affiliation(s)
- Fatma Sarı-Tunel
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; (F.S.-T.); (B.V.)
- Graduate School Institute of Health Sciences, Istanbul University, 34093 Istanbul, Turkey
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, School of Biosciences and Medicine and People-Centred AI Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Burcak Vural
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; (F.S.-T.); (B.V.)
| | - Cenk Eray Yıldız
- Department of Cardiovascular Surgery, Institute of Cardiology, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey;
| | - Evrim Komurcu-Bayrak
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey;
| |
Collapse
|
3
|
Javaid A, KA A, PM S, Arora K, Mudavath SL. Innovative Approaches and Future Directions in the Management and Understanding of Varicose Veins: A Systematic Review. ACS Pharmacol Transl Sci 2024; 7:2971-2986. [PMID: 39421653 PMCID: PMC11480891 DOI: 10.1021/acsptsci.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Varicose veins, a prevalent condition that primarily affects the lower limbs, present significant hurdles in diagnosis and treatment due to their diverse causes. This study dives into the complex hormonal, environmental, and molecular elements that influence varicose vein genesis, emphasizing the need for precise diagnostic methods and changing therapy approaches to improve patient outcomes. It investigates the epidemiology and demographic distribution of varicose veins, delves into their pathophysiology, and assesses diagnostic methods such as duplex ultrasonography and the CEAP classification system. In addition, the study discusses novel therapies such as sclerotherapy and endovenous thermal ablation, as well as the effectiveness of existing diagnostic methods in detecting chronic venous illnesses. By investigating venous wall remodeling and inflammatory pathways, it gives a thorough knowledge of varicose vein formation. The study calls for future research that focuses on patient-centered methods, bioengineering advances, digital health applications, and genetic and molecular studies to improve the accuracy and effectiveness of vascular therapy. As a result, a multidisciplinary literature analysis was done, drawing on insights from vascular medicine, epidemiology, genetics, and pharmacology, to consolidate existing knowledge and identify possibilities to enhance varicose vein diagnosis, treatment, and patient care outcomes.
Collapse
Affiliation(s)
- Aaqib Javaid
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Abutwaibe KA
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Sherilraj PM
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Kanika Arora
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli Hyderabad, Telangana 500046, India
| |
Collapse
|
4
|
Xu D, Yang X, Wu W, Yang J. Identification of Novel Protein Biomarkers and Drug Targets for Acne Vulgaris by Integrating Human Plasma Proteome with Genome-Wide Association Data. J Inflamm Res 2024; 17:4431-4441. [PMID: 39006495 PMCID: PMC11246077 DOI: 10.2147/jir.s463450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Background Despite the availability of numerous therapies, the treatment of acne vulgaris remains challenging. Novel drug targets for acne vulgaris are still needed. Methods We conducted a Mendelian randomization analysis to explore possible drug targets for acne vulgaris. We utilized summary statistics obtained from the dataset of acne vulgaris, including 399,413 individuals of European ancestry. We gathered genetic instruments for 566 plasma proteins from genome-wide association studies. In order to strengthen the findings from Mendelian randomization, various methods were employed, including bidirectional Mendelian randomization analysis, Bayesian co-localization, phenotype scanning, and single-cell analysis. These methods facilitated the identification of reverse causality, the search for reported variant-trait associations, and the determination of the cell types that is the primary source of protein. Furthermore, using the plasma proteins in the deCODE cohort, we conducted a replication of the Mendelian randomization analysis as an external validation. Results At the significance level of Bonferroni (P < 8.83×10-5), a protein-acne pair was discovered through Mendelian randomization analysis. In plasma, increasing TIMP4 (OR = 1.15; 95% CI, 1.09-1.21; P = 1.01×10-7) increased the risk of acne vulgaris. The absence of reverse causality was observed in the TIMP4 protein. According to Bayesian co-localization analysis, TIMP4 shared the same variant with acne vulgaris (PPH4 = 0.93). TIMP4 was replicated in deCODE cohort (OR = 1.17; 95% CI, 1.10-1.24; P = 1.48×10-7). Single-cell analysis revealed that TIMP4 was predominantly detected in myeloid cells in blood, and was detected in almost all cell types in skin tissue. Conclusion The integrative analysis revealed that the level of plasma TIMP4 has a direct influence on the risk of developing acne vulgaris. This implies that TIMP4 protein could serve as a potential target for the development of drugs aimed at treating acne vulgaris.
Collapse
Affiliation(s)
- Dongrui Xu
- School of Basic Medical Sciences, Dali University, Dali, Yunnan, People’s Republic of China
| | - Xiaoyi Yang
- School of Basic Medical Sciences, Dali University, Dali, Yunnan, People’s Republic of China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Jiankang Yang
- School of Basic Medical Sciences, Dali University, Dali, Yunnan, People’s Republic of China
| |
Collapse
|
5
|
Lin YL, Yao T, Wang YW, Zhou ZX, Hong ZC, Shen Y, Yan Y, Li YC, Lin JF. Potential drug targets for gastroesophageal reflux disease and Barrett's esophagus identified through Mendelian randomization analysis. J Hum Genet 2024; 69:245-253. [PMID: 38429412 DOI: 10.1038/s10038-024-01234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Gastroesophageal reflux disease (GERD) is a prevalent chronic ailment, and present therapeutic approaches are not always effective. This study aimed to find new drug targets for GERD and Barrett's esophagus (BE). We obtained genetic instruments for GERD, BE, and 2004 plasma proteins from recently published genome-wide association studies (GWAS), and Mendelian randomization (MR) was employed to explore potential drug targets. We further winnowed down MR-prioritized proteins through replication, reverse causality testing, colocalization analysis, phenotype scanning, and Phenome-wide MR. Furthermore, we constructed a protein-protein interaction network, unveiling potential associations among candidate proteins. Simultaneously, we acquired mRNA expression quantitative trait loci (eQTL) data from another GWAS encompassing four different tissues to identify additional drug targets. Meanwhile, we searched drug databases to evaluate these targets. Under Bonferroni correction (P < 4.8 × 10-5), we identified 11 plasma proteins significantly associated with GERD. Among these, 7 are protective proteins (MSP, GPX1, ERBB3, BT3A3, ANTR2, CCM2, and DECR2), while 4 are detrimental proteins (TMEM106B, DUSP13, C1-INH, and LINGO1). Ultimately, C1-INH and DECR2 successfully passed the screening process and exhibited similar directional causal effects on BE. Further analysis of eQTLs highlighted 4 potential drug targets, including EDEM3, PBX3, MEIS1-AS3, and NME7. The search of drug databases further supported our conclusions. Our study indicated that the plasma proteins C1-INH and DECR2, along with 4 genes (EDEM3, PBX3, MEIS1-AS3, and NME7), may represent potential drug targets for GERD and BE, warranting further investigation.
Collapse
Affiliation(s)
- Yun-Lu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Tao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ying-Wei Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhi-Xiang Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ze-Chao Hong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Yan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yue-Chun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Feng Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
6
|
Cui Y, Hu M, Zhou H, Guo J, Wang Q, Xu Z, Chen L, Zhang W, Tang S. Identifying potential drug targets for varicose veins through integration of GWAS and eQTL summary data. Front Genet 2024; 15:1385293. [PMID: 38818040 PMCID: PMC11138158 DOI: 10.3389/fgene.2024.1385293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
Background Varicose veins (VV) are a common chronic venous disease that is influenced by multiple factors. It affects the quality of life of patients and imposes a huge economic burden on the healthcare system. This study aimed to use integrated analysis methods, including Mendelian randomization analysis, to identify potential pathogenic genes and drug targets for VV treatment. Methods This study conducted Summary-data-based Mendelian Randomization (SMR) analysis and colocalization analysis on data collected from genome-wide association studies and cis-expression quantitative trait loci databases. Only genes with PP.H4 > 0.7 in colocalization were chosen from the significant SMR results. After the above analysis, we screened 12 genes and performed Mendelian Randomization (MR) analysis on them. After sensitivity analysis, we identified four genes with potential causal relationships with VV. Finally, we used transcriptome-wide association studies and The Drug-Gene Interaction Database data to identify and screen the remaining genes and identified four drug targets for the treatment of VV. Results We identified four genes significantly associated with VV, namely, KRTAP5-AS1 [Odds ratio (OR) = 1.08, 95% Confidence interval (CI): 1.05-1.11, p = 1.42e-10] and PLEKHA5 (OR = 1.13, 95% CI: 1.06-1.20, p = 6.90e-5), CBWD1 (OR = 1.05, 95% CI: 1.01-1.11, p = 1.42e-2) and CRIM1 (OR = 0.87, 95% CI: 0.81-0.95, p = 3.67e-3). Increased expression of three genes, namely, KRTAP5-AS1, PLEKHA5, and CBWD1, was associated with increased risk of the disease, and increased expression of CRIM1 was associated with decreased risk of the disease. These four genes could be targeted for VV therapy. Conclusion We identified four potential causal proteins for varicose veins with MR. A comprehensive analysis indicated that KRTAP5-AS1, PLEKHA5, CBWD1, and CRIM1 might be potential drug targets for varicose veins.
Collapse
Affiliation(s)
- Yu Cui
- Shantou University Medical College, Shantou, Guangdong, China
| | - Mengting Hu
- Shantou University Medical College, Shantou, Guangdong, China
| | - He Zhou
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jiarui Guo
- Shantou University Medical College, Shantou, Guangdong, China
| | - Qijia Wang
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zaihua Xu
- Shantou University Medical College, Shantou, Guangdong, China
| | - Liyun Chen
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Wancong Zhang
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|