1
|
Xu Z, Yu H, Zhuang R, Fan Q. Immunotherapy for hypertensive end-organ damage: a new therapeutic strategy. Essays Biochem 2025; 0:EBC20243000. [PMID: 40134277 DOI: 10.1042/ebc20243000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Hypertension represents a highly prevalent chronic condition and stands among the foremost contributors to premature mortality on a global scale. Its etiopathogenesis is intricate and multifaceted, being shaped by a diverse array of elements such as age, genetic predisposition, and activation of the neuroendocrine apparatus. Mounting evidence has shed light on the significant part that autoimmune responses play in hypertension and the ensuing damage to end organs. Virtually all varieties of immune cells, spanning both innate and adaptive immune compartments, exhibit a close correlation with the progression of hypertension. These immune cells infiltrate the kidney and vascular mesenchyme, subsequently discharging potent cytokines, reactive oxygen species, and metalloproteinases. This cascade of events can affect the functionality of local blood vessels and potentially precipitate adverse structural and functional alterations in crucial organs like the heart and kidney. In recent times, the management of end-organ damage in hypertension has emerged as a pivotal scientific focus. A multitude of researchers are actively engaged in probing efficacious intervention regimens, among which immunotherapy strategies hold considerable promise and anticipation as a prospective avenue.
Collapse
Affiliation(s)
- Zhiyang Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210000, China
- Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Haisheng Yu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Rulin Zhuang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qin Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| |
Collapse
|
2
|
Haber A, Foy A. Resistant Hypertension: A Brief Review of Pathophysiology. J Gen Intern Med 2025; 40:654-658. [PMID: 39402409 PMCID: PMC11861848 DOI: 10.1007/s11606-024-09103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 02/27/2025]
Abstract
A 52-year-old male comes to the internal medicine clinic for a follow-up for the management of hypertension. He was initially diagnosed with hypertension 5 years ago. His other past medical history includes obesity and hyperlipidemia. His current medications currently include losartan 100 mg daily, hydrochlorothiazide 25 mg, and amlodipine 10 mg. His physical exam is significant for an elevated in-office blood pressure of 160/105 mmHg, BMI 38, and neck circumference > 40 cm. He also reports snoring at night and having significant daytime sleepiness despite getting over 8 hours of sleep each night. This patient meets the most recent diagnostic criteria per the American Heart Association for resistant hypertension. Resistant hypertension is an increasingly prevalent phenotype encountered in both primary care and subspecialty clinics. Multiple comorbidities, including obesity, sleep apnea, chronic kidney disease, heart failure, and diabetes mellitus, are associated with resistant hypertension. Our understanding of the potential etiologies for this condition continues to evolve rapidly. We used a narrative review to explore four research areas in the pathophysiology of resistant hypertension (the sympathetic nervous system, aldosterone excess, endothelial dysfunction, and inflammation) and explore the novel therapies currently in development.
Collapse
Affiliation(s)
- Alexander Haber
- Department of Internal Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Andrew Foy
- Department of Internal Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
- Division of Cardiology, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
3
|
Fu LY, Yang Y, Li RJ, Issotina Zibrila A, Tian H, Jia XY, Qiao JA, Wu JM, Qi J, Yu XJ, Kang YM. Activation AMPK in Hypothalamic Paraventricular Nucleus Improves Renovascular Hypertension Through ERK1/2-NF-κB Pathway. Cardiovasc Toxicol 2024; 24:904-917. [PMID: 39008239 DOI: 10.1007/s12012-024-09888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
Hypertension is a globally prevalent disease, but the pathogenesis remains largely unclear. AMP-activated protein kinase (AMPK) is a nutrition-sensitive signal of cellular energy metabolism, which has a certain influence on the development of hypertension. Previously, we found a down-regulation of the phosphorylated (p-) form of AMPK, and the up-regulation of the angiotensin II type 1 receptor (AT1-R) and that of p-ERK1/2 in the hypothalamic paraventricular nucleus (PVN) of hypertensive rats. However, the exact mechanism underlying the relationship between AMPK and AT1-R in the PVN during hypertension remains unclear. Thus, we hypothesized that AMPK modulates AT1-R through the ERK1/2-NF-κB pathway in the PVN, thereby inhibiting sympathetic nerve activity and improving hypertension. To examine this hypothesis, we employed a renovascular hypertensive animal model developed via two-kidney, one-clip (2K1C) and sham-operated (SHAM). Artificial cerebrospinal fluid (aCSF), used as vehicle, or 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, an AMPK activator, 60 μg/day) was microinjected bilaterally in the PVN of these rats for 4 weeks. In 2K1C rats, there an increase in systolic blood pressure (SBP) and circulating norepinephrine (NE). Also, the hypertensive rats had lowered expression of p-AMPK and p-AMPK/AMPK, elevated expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R, increased NF-κB p65 activity in the PVN compared with the levels of these biomarkers in SHAM rats. Four weeks of bilateral PVN injection of AMPK activator AICAR, attenuated the NE level and SBP, increased the expression of p-AMPK and p-AMPK/AMPK, lessened the NF-κB p65 activity, decreased the expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R in the PVN of 2K1C rats. Data from this study imply that the activation of AMPK within the PVN suppressed AT1-R expression through inhibiting the ERK1/2-NF-κB pathway, decreased the activity of the sympathetic nervous system, improved hypertension.
Collapse
Affiliation(s)
- Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Rui-Juan Li
- Department of Infectious Diseases, The Second Affiliated Hospital, Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Diagnosis, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Xiu-Yue Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jin-An Qiao
- Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, 710002, Shaanxi, China
| | - Jin-Min Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Maia LA, de Souza JR, da Silva LDFR, Magnani M, de Souza EL, de Brito Alves JL. Effects of Probiotics on Inflammatory Biomarkers and Its Associations With Cardiac Autonomic Function in Women With Arterial Hypertension: A Secondary Analysis of a Randomized Clinical Trial. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10303-6. [PMID: 38842655 DOI: 10.1007/s12602-024-10303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Preclinical evidence suggests that probiotic administration may exert an anti-inflammatory effect and reduce autonomic dysfunction and blood pressure. This study evaluated the effects of probiotic therapy on inflammatory biomarkers and characterized the correlations between inflammation and cardiac autonomic function in women with arterial hypertension. Women were randomized into probiotics (n = 20) or placebo (n = 20). The probiotic group received 109 CFU/day of Lactobacillus (L.) paracasei LPC-37, L. rhamnosus HN001, L. acidophilus NCFM, and Bifidobacterium lactis HN019, and the placebo group received polydextrose. Clinical, electrocardiogram, heart rate variability (HRV) analysis, and cytokine levels were assessed at baseline and after 8 weeks. Women who received probiotics for 8 weeks had increased serum levels of IL-17A (p = 0.02) and decreased INF-γ (p = 0.02) compared to baseline. Probiotic supplementation increased serum levels of IL-10 compared to the placebo group (p = 0.03). Probiotic or placebo administration did not change serum levels of TNFα and IL-6. Serum levels of IL-2 (p = 0.001, and p = 0.001) and IL-4 (p = 0.001, and p = 0.001) were reduced in women receiving placebo or probiotics, respectively. Correlations between HRV indices and inflammatory variables showed that INF-γ was positively correlated with heart rate (HR) and sympathetic HRV indices and negatively correlated with vagal HRV indices. IL-10 was negatively correlated with HR and sympathetic HRV indices. IL-6 was negatively correlated with parasympathetic HRV indices and positively correlated with SD2/SD1 ratio. Probiotic therapy has a discreet anti-inflammatory effect in hypertensive women, and pro-inflammatory cytokines were negatively correlated with vagal modulation and positively correlated with sympathetic modulation of HRV. The clinical trial was registered in the Brazilian Registry of Clinical Trials (ReBEC) with the identification RBR-9mj2dt.
Collapse
Affiliation(s)
- Larissa Araújo Maia
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | | | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, PB, Brazil.
| |
Collapse
|
6
|
Elshoff D, Mehta P, Ziouzenkova O. Chronic Kidney Disease Diets for Kidney Failure Prevention: Insights from the IL-11 Paradigm. Nutrients 2024; 16:1342. [PMID: 38732588 PMCID: PMC11085624 DOI: 10.3390/nu16091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Nearly every fifth adult in the United States and many older adults worldwide are affected by chronic kidney disease (CKD), which can progress to kidney failure requiring invasive kidney replacement therapy. In this review, we briefly examine the pathophysiology of CKD and discuss emerging mechanisms involving the physiological resolution of kidney injury by transforming growth factor beta 1 (TGFβ1) and interleukin-11 (IL-11), as well as the pathological consequences of IL-11 overproduction, which misguides repair processes, ultimately culminating in CKD. Taking these mechanisms into account, we offer an overview of the efficacy of plant-dominant dietary patterns in preventing and managing CKD, while also addressing their limitations in terms of restoring kidney function or preventing kidney failure. In conclusion, this paper outlines novel regeneration strategies aimed at developing a reno-regenerative diet to inhibit IL-11 and promote repair mechanisms in kidneys affected by CKD.
Collapse
Affiliation(s)
- Denise Elshoff
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA;
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Priyanka Mehta
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The mounting body of evidence underscores the pivotal role of interferon gamma (IFNγ) in the pathogenesis of hypertension, prompting exploration of the mechanisms by which this cytokine fosters a pro-inflammatory immune milieu, subsequently exacerbating hypertension. In this review, we delve into recent preclinical and clinical studies from the past two years to elucidate how IFNγ participates in the progression of hypertension. RECENT FINDINGS IFNγ promotes renal CD8 + T cell accumulation by upregulating tubular PDL1 and MHC-I, intensifying cell-to-cell interaction. Intriguingly, a nucleotide polymorphism in LNK, predisposing towards hypertension, correlates with augmented T cell IFNγ production. Additionally, anti-IFNγ treatment exhibits protective effects against T cell-mediated inflammation during angiotensin II infusion or transverse aortic constriction. Moreover, knockout of the mineralocorticoid receptor in T cells protects against cardiac dysfunction induced by myocardial infarction, correlating with reduced IFNγ and IL-6, decreased macrophage recruitment, and attenuated fibrosis. Interestingly, increased IFNγ production correlates with elevated blood pressure, impacting individuals with type 2 diabetes, nondiabetics, and obese hypertensive patients. SUMMARY These revelations spotlight IFNγ as the critical mediator bridging the initial phase of blood pressure elevation with the sustained and exacerbated pathology. Consequently, blocking IFNγ signaling emerges as a promising therapeutic target to improve the management of this 'silent killer.'
Collapse
Affiliation(s)
- Lance N. Benson
- Heersink School of Medicine: Department of CardioRenal Physiology and Medicine, Division of Nephrology University of Alabama at Birmingham, Birmingham, Alabama
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
8
|
Govender MA, Stoychev SH, Brandenburg JT, Ramsay M, Fabian J, Govender IS. Proteomic insights into the pathophysiology of hypertension-associated albuminuria: Pilot study in a South African cohort. Clin Proteomics 2024; 21:15. [PMID: 38402394 PMCID: PMC10893729 DOI: 10.1186/s12014-024-09458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Hypertension is an important public health priority with a high prevalence in Africa. It is also an independent risk factor for kidney outcomes. We aimed to identify potential proteins and pathways involved in hypertension-associated albuminuria by assessing urinary proteomic profiles in black South African participants with combined hypertension and albuminuria compared to those who have neither condition. METHODS The study included 24 South African cases with both hypertension and albuminuria and 49 control participants who had neither condition. Protein was extracted from urine samples and analysed using ultra-high-performance liquid chromatography coupled with mass spectrometry. Data were generated using data-independent acquisition (DIA) and processed using Spectronaut™ 15. Statistical and functional data annotation were performed on Perseus and Cytoscape to identify and annotate differentially abundant proteins. Machine learning was applied to the dataset using the OmicLearn platform. RESULTS Overall, a mean of 1,225 and 915 proteins were quantified in the control and case groups, respectively. Three hundred and thirty-two differentially abundant proteins were constructed into a network. Pathways associated with these differentially abundant proteins included the immune system (q-value [false discovery rate] = 1.4 × 10- 45), innate immune system (q = 1.1 × 10- 32), extracellular matrix (ECM) organisation (q = 0.03) and activation of matrix metalloproteinases (q = 0.04). Proteins with high disease scores (76-100% confidence) for both hypertension and chronic kidney disease included angiotensinogen (AGT), albumin (ALB), apolipoprotein L1 (APOL1), and uromodulin (UMOD). A machine learning approach was able to identify a set of 20 proteins, differentiating between cases and controls. CONCLUSIONS The urinary proteomic data combined with the machine learning approach was able to classify disease status and identify proteins and pathways associated with hypertension-associated albuminuria.
Collapse
Affiliation(s)
- Melanie A Govender
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Stoyan H Stoychev
- Council for Scientific and Industrial Research, NextGen Health, Pretoria, South Africa
- ReSyn Biosciences, Edenvale, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - June Fabian
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ireshyn S Govender
- Council for Scientific and Industrial Research, NextGen Health, Pretoria, South Africa.
- ReSyn Biosciences, Edenvale, South Africa.
| |
Collapse
|