1
|
Vicent L, Rosillo N, Vélez J, Moreno G, Pérez P, Bernal JL, Seara G, Salguero-Bodes R, Arribas F, Bueno H. Profiling heart failure with preserved or mildly reduced ejection fraction by cluster analysis. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2025; 11:140-148. [PMID: 39118371 DOI: 10.1093/ehjqcco/qcae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Significant knowledge gaps remain regarding the heterogeneity of heart failure (HF) phenotypes, particularly among patients with preserved or mildly reduced left ventricular ejection fraction (HFp/mrEF). Our aim was to identify HF subtypes within the HFp/mrEF population. METHODS K-prototypes clustering algorithm was used to identify different HF phenotypes in a cohort of 2570 patients diagnosed with heart failure with mildly reduced ejection fraction or heart failure with preserved left ventricular ejection fraction. This algorithm employs the k-means algorithm for quantitative variables and k-modes for qualitative variables. RESULTS We identified three distinct phenotypic clusters: Cluster A (n = 850, 33.1%), characterized by a predominance of women with low comorbidity burden; Cluster B (n = 830, 32.3%), mainly women with diabetes mellitus and high comorbidity; and Cluster C (n = 890, 34.5%), primarily men with a history of active smoking and respiratory comorbidities. Significant differences were observed in baseline characteristics and 1-year mortality rates across the clusters: 18% for Cluster A, 33% for Cluster B, and 26.4% for Cluster C (P < 0.001). Cluster B had the shortest median time to death (90 days), followed by Clusters C (99 days) and A (144 days) (P < 0.001). Stratified Cox regression analysis identified age, cancer, respiratory failure, and laboratory parameters as predictors of mortality. CONCLUSION Cluster analysis identified three distinct phenotypes within the HFp/mrEF population, highlighting significant heterogeneity in clinical profiles and prognostic implications. Women were classified into two distinct phenotypes: low-risk women and diabetic women with high mortality rates, while men had a more uniform profile with a higher prevalence of respiratory disease.
Collapse
Affiliation(s)
- Lourdes Vicent
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid 28041, Spain
| | - Nicolás Rosillo
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
- Department of Preventive Medicine, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
| | - Jorge Vélez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Guillermo Moreno
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040, Spain
| | - Pablo Pérez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - José Luis Bernal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
- Control Management Department, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
| | - Germán Seara
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Rafael Salguero-Bodes
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Fernando Arribas
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Héctor Bueno
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid 28041, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| |
Collapse
|
2
|
Reinikainen J, Palosaari T, Canosa-Valls AJ, Schmidt CO, Wissa R, Chadalavada S, Codó L, Gelpí JL, Joseph B, van der Lugt A, Pacella E, Petersen SE, Pujadas ER, Szabo L, Zeller T, Niiranen T, Lekadir K, Kuulasmaa K. Cohort Profile: The Cardiovascular Research Data Catalogue. Int J Epidemiol 2024; 53:dyad175. [PMID: 38142238 DOI: 10.1093/ije/dyad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Affiliation(s)
- Jaakko Reinikainen
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tarja Palosaari
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Carsten O Schmidt
- Functional Division Quality in the Health Sciences (QIHS), Department SHIP-KEF, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Rita Wissa
- Maelstrom Research, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Sucharitha Chadalavada
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Laia Codó
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Josep Lluís Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - Bijoy Joseph
- Data and Analytics Unit, Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Elsa Pacella
- Scientific Affairs, Research Department, European Society of Cardiology, France
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Health Data Research UK, London, UK
| | - Esmeralda Ruiz Pujadas
- Department of Mathematics and Computer Science, Artificial Intelligence in Medicine Lab (BCN-AIM), Barcelona, Spain
| | - Liliana Szabo
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Semmelweis University, Heart and Vascular Centre, Budapest, Hungary
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- German Center of Cardiovascular Research, Partner site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Teemu Niiranen
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Internal Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Karim Lekadir
- Department of Mathematics and Computer Science, Artificial Intelligence in Medicine Lab (BCN-AIM), Barcelona, Spain
| | - Kari Kuulasmaa
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|