1
|
Nemes A, Olajos DL, Achim A, Ruzsa Z, Ambrus N, Lengyel C. Long-Term Prognostic Power of Three-Dimensional Speckle-Tracking Echocardiography-Derived Peak Left Atrial Reservoir Global Longitudinal Strain in Healthy Adults-An Analysis from the MAGYAR-Healthy Study. Life (Basel) 2025; 15:232. [PMID: 40003640 PMCID: PMC11856474 DOI: 10.3390/life15020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction: The contraction-relaxation pattern of the left atrial (LA) walls is opposite to that detected in the left ventricle, which includes thinning in radial, lengthening in longitudinal, and widening in circumferential directions in the systolic reservoir phase of LA function as measured by three-dimensional speckle-tracking echocardiography (3DSTE). Global longitudinal strain (GLS) is a quantitative feature of longitudinal wall contraction referring to the whole LA. The present study aims to clarify the expected prognostic impact of peak LA-GLS as assessed by 3DSTE in healthy participants during a long-term follow-up period. Methods: The study consisted of 142 healthy adults (with an average age of 32.1 ± 12.7 years; 72 of the participants were men), in whom complete two-dimensional Doppler echocardiography and 3DSTE were performed on a voluntary basis. Results: Thirteen adults suffered from a cardiovascular event, including two cardiac deaths during a mean follow-up of 8.35 ± 4.20 years. Peak LA-GLS ≥ 20.9%, as assessed by 3DSTE, was found to be a significant predictor for cardiovascular event-free survival by using ROC analysis (specificity 74%, sensitivity 62%, area under the curve 0.69, p = 0.025). Healthy individuals with peak LA-GLS < 20.9% had a lower LV-EF and a significantly higher ratio of cardiovascular events compared to cases with peak LA-GLS ≥ 20.9%. Subjects who experienced cardiovascular events had lower peak LA-GLS and the ratio of subjects with peak LA-GLS < 20.9% proved to be significantly increased compared to that of cases without cardiovascular events. Conclusions: 3DSTE-derived peak LA-GLS representing LA lengthening in the end-systolic reservoir phase of LA function predicts future cardiovascular events in healthy adults.
Collapse
Affiliation(s)
- Attila Nemes
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (D.L.O.); (A.A.); (Z.R.); (N.A.); (C.L.)
| | | | | | | | | | | |
Collapse
|
2
|
Lukovic D, Gyöngyösi M, Pavo IJ, Mester-Tonczar J, Einzinger P, Zlabinger K, Kastner N, Spannbauer A, Traxler D, Pavo N, Goliasch G, Pils D, Jakab A, Szankai Z, Michel-Behnke I, Zhang L, Devaux Y, Graf S, Beitzke D, Winkler J. Increased [ 18F]FDG uptake in the infarcted myocardial area displayed by combined PET/CMR correlates with snRNA-seq-detected inflammatory cell invasion. Basic Res Cardiol 2024; 119:807-829. [PMID: 38922408 PMCID: PMC11461641 DOI: 10.1007/s00395-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Combined [18F]FDG PET-cardiac MRI imaging (PET/CMR) is a useful tool to assess myocardial viability and cardiac function in patients with acute myocardial infarction (AMI). Here, we evaluated the prognostic value of PET/CMR in a porcine closed-chest reperfused AMI (rAMI) model. Late gadolinium enhancement by PET/CMR imaging displayed tracer uptake defect at the infarction site by 3 days after the rAMI in the majority of the animals (group Match, n = 28). Increased [18F]FDG uptake at the infarcted area (metabolism/contractility mismatch) with reduced tracer uptake in the remote viable myocardium (group Mismatch, n = 12) 3 days after rAMI was observed in the animals with larger infarct size and worse left ventricular ejection fraction (LVEF) (34 ± 8.7 vs 42.0 ± 5.2%), with lower LVEF also at the 1-month follow-up (35.8 ± 9.5 vs 43.0 ± 6.3%). Transcriptome analyses by bulk and single-nuclei RNA sequencing of the infarcted myocardium and border zones (n = 3 of each group, and 3 sham-operated controls) revealed a strong inflammatory response with infiltration of monocytes and macrophages in the infarcted and border areas in Mismatch animals. Our data indicate a high prognostic relevance of combined PET/MRI in the subacute phase of rAMI for subsequent impairment of heart function and underline the adverse effects of an excessive activation of the innate immune system in the initial phase after rAMI.
Collapse
Affiliation(s)
- Dominika Lukovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| | - Imre J Pavo
- Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Julia Mester-Tonczar
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Patrick Einzinger
- Institute of Information Systems Engineering, Research Unit of Information and Software Engineering, Vienna University of Technology, 1040, Vienna, Austria
| | - Katrin Zlabinger
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Nina Kastner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Andreas Spannbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Noemi Pavo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Andras Jakab
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Ina Michel-Behnke
- Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Senta Graf
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Johannes Winkler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Lange T, Backhaus SJ, Schulz A, Hashemi D, Evertz R, Kowallick JT, Hasenfuß G, Kelle S, Schuster A. CMR-based cardiac phenotyping in different forms of heart failure. Int J Cardiovasc Imaging 2024; 40:1585-1596. [PMID: 38878148 PMCID: PMC11258094 DOI: 10.1007/s10554-024-03145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/15/2024] [Indexed: 07/19/2024]
Abstract
Heart failure (HF) is a heterogenous disease requiring precise diagnostics and knowledge of pathophysiological processes. Since structural and functional imaging data are scarce we hypothesized that cardiac magnetic resonance (CMR)-based analyses would provide accurate characterization and mechanistic insights into different HF groups comprising preserved (HFpEF), mid-range (HFmrEF) and reduced ejection fraction (HFrEF). 22 HFpEF, 17 HFmrEF and 15 HFrEF patients as well as 19 healthy volunteers were included. CMR image assessment contained left atrial (LA) and left ventricular (LV) volumetric evaluation as well as left atrioventricular coupling index (LACI). Furthermore, CMR feature-tracking included LV and LA strain in terms of reservoir (Es), conduit (Ee) and active boosterpump (Ea) function. CMR-based tissue characterization comprised T1 mapping as well as late-gadolinium enhancement (LGE) analyses. HFpEF patients showed predominant atrial impairment (Es 20.8%vs.25.4%, p = 0.02 and Ee 8.3%vs.13.5%, p = 0.001) and increased LACI compared to healthy controls (14.5%vs.23.3%, p = 0.004). Patients with HFmrEF showed LV enlargement but mostly preserved LA function with a compensatory increase in LA boosterpump (LA Ea: 15.0%, p = 0.049). In HFrEF LA and LV functional impairment was documented (Es: 14.2%, Ee: 5.4% p < 0.001 respectively; Ea: 8.8%, p = 0.02). This was paralleled by non-invasively assessed progressive fibrosis (T1 mapping and LGE; HFrEF > HFmrEF > HFpEF). CMR-imaging reveals insights into HF phenotypes with mainly atrial affection in HFpEF, ventricular affection with atrial compensation in HFmrEF and global impairment in HFrEF paralleled by progressive LV fibrosis. These data suggest a necessity for a personalized HF management based on imaging findings for future optimized patient management.
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-Universität Gießen, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| | - Djawid Hashemi
- Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| | - Johannes T Kowallick
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| | - Sebastian Kelle
- Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany.
| |
Collapse
|
4
|
Coraducci F, De Zan G, Fedele D, Costantini P, Guaricci AI, Pavon AG, Teske A, Cramer MJ, Broekhuizen L, Van Osch D, Danad I, Velthuis B, Suchá D, van der Bilt I, Pizzi C, Russo AD, Oerlemans M, van Laake LW, van der Harst P, Guglielmo M. Cardiac magnetic resonance in advanced heart failure. Echocardiography 2024; 41:e15849. [PMID: 38837443 DOI: 10.1111/echo.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Heart failure (HF) is a chronic and progressive disease that often progresses to an advanced stage where conventional therapy is insufficient to relieve patients' symptoms. Despite the availability of advanced therapies such as mechanical circulatory support or heart transplantation, the complexity of defining advanced HF, which requires multiple parameters and multimodality assessment, often leads to delays in referral to dedicated specialists with the result of a worsening prognosis. In this review, we aim to explore the role of cardiac magnetic resonance (CMR) in advanced HF by showing how CMR is useful at every step in managing these patients: from diagnosis to prognostic stratification, hemodynamic evaluation, follow-up and advanced therapies such as heart transplantation. The technical challenges of scanning advanced HF patients, which often require troubleshooting of intracardiac devices and dedicated scans, will be also discussed.
Collapse
Affiliation(s)
| | - Giulia De Zan
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Damiano Fedele
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda, Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Bologna, Italy
| | - Pietro Costantini
- Department of Radiology, Ospedale Universitario Maggiore della Carità di Novara, University of Eastern Piedmont, Novara, Italy
| | - Andrea Igoren Guaricci
- Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari, Bari, Italy
| | - Anna Giulia Pavon
- Division of Cardiology, Cardiocentro Ticino Institute Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Arco Teske
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maarten Jan Cramer
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lysette Broekhuizen
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dirk Van Osch
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ibrahim Danad
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Birgitta Velthuis
- Division of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dominika Suchá
- Division of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ivo van der Bilt
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
- Cardiology Department, HAGA Ziekenhuis, Den Haag, The Netherlands
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda, Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Bologna, Italy
| | | | - Marish Oerlemans
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Linda W van Laake
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Pim van der Harst
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marco Guglielmo
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
- Cardiology Department, HAGA Ziekenhuis, Den Haag, The Netherlands
| |
Collapse
|
5
|
Corral Acero J, Lamata P, Eitel I, Zacur E, Evertz R, Lange T, Backhaus SJ, Stiermaier T, Thiele H, Bueno-Orovio A, Schuster A, Grau V. Comprehensive characterization of cardiac contraction for improved post-infarction risk assessment. Sci Rep 2024; 14:8951. [PMID: 38637609 PMCID: PMC11026383 DOI: 10.1038/s41598-024-59114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
This study aims at identifying risk-related patterns of left ventricular contraction dynamics via novel volume transient characterization. A multicenter cohort of AMI survivors (n = 1021) who underwent Cardiac Magnetic Resonance (CMR) after infarction was considered for the study. The clinical endpoint was the 12-month rate of major adverse cardiac events (MACE, n = 73), consisting of all-cause death, reinfarction, and new congestive heart failure. Cardiac function was characterized from CMR in 3 potential directions: by (1) volume temporal transients (i.e. contraction dynamics); (2) feature tracking strain analysis (i.e. bulk tissue peak contraction); and (3) 3D shape analysis (i.e. 3D contraction morphology). A fully automated pipeline was developed to extract conventional and novel artificial-intelligence-derived metrics of cardiac contraction, and their relationship with MACE was investigated. Any of the 3 proposed directions demonstrated its additional prognostic value on top of established CMR indexes, myocardial injury markers, basic characteristics, and cardiovascular risk factors (P < 0.001). The combination of these 3 directions of enhancement towards a final CMR risk model improved MACE prediction by 13% compared to clinical baseline (0.774 (0.771-0.777) vs. 0.683 (0.681-0.685) cross-validated AUC, P < 0.001). The study evidences the contribution of the novel contraction characterization, enabled by a fully automated pipeline, to post-infarction assessment.
Collapse
Affiliation(s)
- Jorge Corral Acero
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| | - Pablo Lamata
- Department of Digital Twins for Healthcare, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor North Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Ingo Eitel
- Medical Clinic II, Cardiology, Angiology and Intensive Care Medicine, University Heart Centre Lübeck, Lübeck, Germany
- University Hospital Schleswig-Holstein, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ernesto Zacur
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Thomas Stiermaier
- Medical Clinic II, Cardiology, Angiology and Intensive Care Medicine, University Heart Centre Lübeck, Lübeck, Germany
- University Hospital Schleswig-Holstein, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Science, Heart Centre Leipzig at University of Leipzig, Leipzig, Germany
| | | | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
| | - Vicente Grau
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Barison A, Ceolin R, Palmieri A, Tamborrino PP, Todiere G, Grigoratos C, Gueli IA, De Gori C, Clemente A, Pistoia L, Pepe A, Aquaro GD, Positano V, Emdin M, Cademartiri F, Meloni A. Biventricular Tissue Tracking with Cardiovascular Magnetic Resonance: Reference Values of Left- and Right-Ventricular Strain. Diagnostics (Basel) 2023; 13:2912. [PMID: 37761278 PMCID: PMC10527573 DOI: 10.3390/diagnostics13182912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
We derived reference values of left-ventricular (LV) and right-ventricular (RV) strain parameters in a cohort of 100 healthy subjects by feature tracking cardiac magnetic resonance (FT-CMR). Global and regional strain values were calculated for the LV; circumferential and radialSAX strain parameters were derived from the short-axis (SAX) stack, while longitudinal and radialLAX strain parameters were assessed in three long-axis (LAX) views. Only global longitudinal strain (GLS) was calculated for the RV. Peak global LV circumferential strain was -16.7% ± 2.1%, LV radialSAX strain was 26.4% ± 5.1%, LV radialLAX strain was 31.1% ± 5.2%, LV GLS was -17.7% ± 1.9%, and RV GLS was -23.9% ± 4.1%. Women presented higher global LV and RV strain values than men; all strain values presented a weak relationship with body surface area, while there was no association with age or heart rate. A significant association was detected between all LV global strain measures and LV ejection fraction, while RV GLS was correlated to RV end-diastolic volume. The intra- and inter-operator reproducibility was good for all global strain measures. In the regional analysis, circumferential and radial strain values resulted higher at the apical level, while longitudinal strain values were higher at the basal level. The assessment of cardiac deformation by FT-CMR is feasible and reproducible and gender-specific reference values should be used.
Collapse
Affiliation(s)
- Andrea Barison
- Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Roberto Ceolin
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, 34128 Trieste, Italy
| | - Alessandro Palmieri
- Cardiothoracovascular Department, Careggi University Hospital, 50134 Florence, Italy
| | - Pietro Paolo Tamborrino
- Cardiology Division, Cardiothoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Giancarlo Todiere
- Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Chrysanthos Grigoratos
- Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Ignazio Alessio Gueli
- Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
- Clinical Research Unit, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Alessia Pepe
- Institute of Radiology, Department of Medicine, University of Padua, 35128 Padova, Italy
| | - Giovanni Donato Aquaro
- Academic Radiology Unit, Department of Surgical Medical and Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Michele Emdin
- Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Antonella Meloni
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| |
Collapse
|