1
|
Abdelaziz EH, Ismail R, Mabrouk MS, Amin E. Multi-omics data integration and analysis pipeline for precision medicine: Systematic review. Comput Biol Chem 2024; 113:108254. [PMID: 39447405 DOI: 10.1016/j.compbiolchem.2024.108254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Precision medicine has gained considerable popularity since the "one-size-fits-all" approach did not seem very effective or reflective of the complexity of the human body. Subsequently, since single-omics does not reflect the complexity of the human body's inner workings, it did not result in the expected advancement in the medical field. Therefore, the multi-omics approach has emerged. The multi-omics approach involves integrating data from different omics technologies, such as DNA sequencing, RNA sequencing, mass spectrometry, and others, using computational methods and then analyzing the integrated result for different downstream analysis applications such as survival analysis, cancer classification, or biomarker identification. Most of the recent reviews were constrained to discussing one aspect of the multi-omics analysis pipeline, such as the dimensionality reduction step, the integration methods, or the interpretability aspect; however, very few provide a comprehensive review of every step of the analysis. This study aims to give an overview of the multi-omics analysis pipeline, starting with the most popular multi-omics databases used in recent literature, dimensionality reduction techniques, details the different types of data integration techniques and their downstream analysis applications, describes the most commonly used evaluation metrics, highlights the importance of model interpretability, and lastly discusses the challenges and potential future work for multi-omics data integration in precision medicine.
Collapse
Affiliation(s)
| | - Rasha Ismail
- Faculty of Computer and Information Sciences, Ainshams University, Cairo, Egypt.
| | - Mai S Mabrouk
- Information Technology and Computer Science School, Nile University, Cairo, Egypt.
| | - Eman Amin
- Faculty of Computer and Information Sciences, Ainshams University, Cairo, Egypt.
| |
Collapse
|
2
|
Yan H, Weng D, Li D, Gu Y, Ma W, Liu Q. Prior knowledge-guided multilevel graph neural network for tumor risk prediction and interpretation via multi-omics data integration. Brief Bioinform 2024; 25:bbae184. [PMID: 38670157 PMCID: PMC11052635 DOI: 10.1093/bib/bbae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The interrelation and complementary nature of multi-omics data can provide valuable insights into the intricate molecular mechanisms underlying diseases. However, challenges such as limited sample size, high data dimensionality and differences in omics modalities pose significant obstacles to fully harnessing the potential of these data. The prior knowledge such as gene regulatory network and pathway information harbors useful gene-gene interaction and gene functional module information. To effectively integrate multi-omics data and make full use of the prior knowledge, here, we propose a Multilevel-graph neural network (GNN): a hierarchically designed deep learning algorithm that sequentially leverages multi-omics data, gene regulatory networks and pathway information to extract features and enhance accuracy in predicting survival risk. Our method achieved better accuracy compared with existing methods. Furthermore, key factors nonlinearly associated with the tumor pathogenesis are prioritized by employing two interpretation algorithms (i.e. GNN-Explainer and IGscore) for neural networks, at gene and pathway level, respectively. The top genes and pathways exhibit strong associations with disease in survival analyses, many of which such as SEC61G and CYP27B1 are previously reported in the literature.
Collapse
Affiliation(s)
- Hongxi Yan
- Department of Computer Science, Beihang University, XueYuan Road, 100191, BeiJing, China
| | - Dawei Weng
- School of Biomedical Engineering, Capital Medical University, 10 You An Men WaiXi Tou Tiao, 100069, Beijing, China
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, 10 You An Men WaiXi Tou Tiao, 100069, Beijing, China
| | - Yu Gu
- School of Biomedical Engineering, Capital Medical University, 10 You An Men WaiXi Tou Tiao, 100069, Beijing, China
| | - Wenji Ma
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, 200025, Shanghai, China
| | - Qingjie Liu
- Department of Computer Science, Beihang University, XueYuan Road, 100191, BeiJing, China
| |
Collapse
|
3
|
Tong L, Shi W, Isgut M, Zhong Y, Lais P, Gloster L, Sun J, Swain A, Giuste F, Wang MD. Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence. IEEE Rev Biomed Eng 2024; 17:80-97. [PMID: 37824325 DOI: 10.1109/rbme.2023.3324264] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the recent advancement of novel biomedical technologies such as high-throughput sequencing and wearable devices, multi-modal biomedical data ranging from multi-omics molecular data to real-time continuous bio-signals are generated at an unprecedented speed and scale every day. For the first time, these multi-modal biomedical data are able to make precision medicine close to a reality. However, due to data volume and the complexity, making good use of these multi-modal biomedical data requires major effort. Researchers and clinicians are actively developing artificial intelligence (AI) approaches for data-driven knowledge discovery and causal inference using a variety of biomedical data modalities. These AI-based approaches have demonstrated promising results in various biomedical and healthcare applications. In this review paper, we summarize the state-of-the-art AI models for integrating multi-omics data and electronic health records (EHRs) for precision medicine. We discuss the challenges and opportunities in integrating multi-omics data with EHRs and future directions. We hope this review can inspire future research and developing in integrating multi-omics data with EHRs for precision medicine.
Collapse
|
4
|
Chen J, Xiao H, Xue R, Kumar V, Aslam R, Mehdi SF, Luo H, Malhotra A, Lan X, Singhal P. Nicotine exacerbates diabetic nephropathy through upregulation of Grem1 expression. Mol Med 2023; 29:92. [PMID: 37415117 DOI: 10.1186/s10020-023-00692-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinical reports indicate that smoking is a significant risk factor for chronic kidney disease, and the tobacco epidemic exacerbates kidney damage in patients with DN. However, the underlying molecular mechanisms remain unclear. METHOD In the present study, we used a diabetic mouse model to investigate the molecular mechanisms for nicotine-exacerbated DN. Twelve-week-old female mice were injected with streptozotocin (STZ) to establish a hyperglycemic diabetic model. After four months, the control and hyperglycemic diabetic mice were further divided into four groups (control, nicotine, diabetic mellitus, nicotine + diabetic mellitus) by intraperitoneal injection of nicotine or PBS. After two months, urine and blood were collected for kidney injury assay, and renal tissues were harvested for further molecular assays using RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry. In vitro studies, we used siRNA to suppress Grem1 expression in human podocytes. Then we treated them with nicotine and high glucose to compare podocyte injury. RESULT Nicotine administration alone did not cause apparent kidney injury, but it significantly increased hyperglycemia-induced albuminuria, BUN, plasma creatinine, and the kidney tissue mRNA expression of KIM-1 and NGAL. Results from RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry analysis revealed that, compared to hyperglycemia or nicotine alone, the combination of nicotine treatment and hyperglycemia significantly increased the expression of Grem1 and worsened DN. In vitro experiments, suppression of Grem1 expression attenuated nicotine-exacerbated podocyte injury. CONCLUSION Grem1 plays a vital role in nicotine-exacerbated DN. Grem1 may be a potential therapeutic target for chronic smokers with DN.
Collapse
Affiliation(s)
- Jianning Chen
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Haiting Xiao
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Rui Xue
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Vinod Kumar
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Rukhsana Aslam
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Syed Faizan Mehdi
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Huairong Luo
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Xiqian Lan
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Pravin Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
5
|
Lee M. Deep Learning Techniques with Genomic Data in Cancer Prognosis: A Comprehensive Review of the 2021-2023 Literature. BIOLOGY 2023; 12:893. [PMID: 37508326 PMCID: PMC10376033 DOI: 10.3390/biology12070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Deep learning has brought about a significant transformation in machine learning, leading to an array of novel methodologies and consequently broadening its influence. The application of deep learning in various sectors, especially biomedical data analysis, has initiated a period filled with noteworthy scientific developments. This trend has majorly influenced cancer prognosis, where the interpretation of genomic data for survival analysis has become a central research focus. The capacity of deep learning to decode intricate patterns embedded within high-dimensional genomic data has provoked a paradigm shift in our understanding of cancer survival. Given the swift progression in this field, there is an urgent need for a comprehensive review that focuses on the most influential studies from 2021 to 2023. This review, through its careful selection and thorough exploration of dominant trends and methodologies, strives to fulfill this need. The paper aims to enhance our existing understanding of applications of deep learning in cancer survival analysis, while also highlighting promising directions for future research. This paper undertakes aims to enrich our existing grasp of the application of deep learning in cancer survival analysis, while concurrently shedding light on promising directions for future research in this vibrant and rapidly proliferating field.
Collapse
Affiliation(s)
- Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Wysocka M, Wysocki O, Zufferey M, Landers D, Freitas A. A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data. BMC Bioinformatics 2023; 24:198. [PMID: 37189058 PMCID: PMC10186658 DOI: 10.1186/s12859-023-05262-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. METHODS This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. RESULTS We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. CONCLUSIONS The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.
Collapse
Affiliation(s)
- Magdalena Wysocka
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Department of Computer Science, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
| | - Oskar Wysocki
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Department of Computer Science, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Idiap Research Institute, National University of Sciences, Rue Marconi 19, CH - 1920 Martigny, Switzerland
| | - Marie Zufferey
- Idiap Research Institute, National University of Sciences, Rue Marconi 19, CH - 1920 Martigny, Switzerland
| | - Dónal Landers
- DeLondra Oncology Ltd, 38 Carlton Avenue, Wilmslow, SK9 4EP UK
| | - André Freitas
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Department of Computer Science, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Idiap Research Institute, National University of Sciences, Rue Marconi 19, CH - 1920 Martigny, Switzerland
| |
Collapse
|
7
|
Mohammed MA, Abdulkareem KH, Dinar AM, Zapirain BG. Rise of Deep Learning Clinical Applications and Challenges in Omics Data: A Systematic Review. Diagnostics (Basel) 2023; 13:664. [PMID: 36832152 PMCID: PMC9955380 DOI: 10.3390/diagnostics13040664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
This research aims to review and evaluate the most relevant scientific studies about deep learning (DL) models in the omics field. It also aims to realize the potential of DL techniques in omics data analysis fully by demonstrating this potential and identifying the key challenges that must be addressed. Numerous elements are essential for comprehending numerous studies by surveying the existing literature. For example, the clinical applications and datasets from the literature are essential elements. The published literature highlights the difficulties encountered by other researchers. In addition to looking for other studies, such as guidelines, comparative studies, and review papers, a systematic approach is used to search all relevant publications on omics and DL using different keyword variants. From 2018 to 2022, the search procedure was conducted on four Internet search engines: IEEE Xplore, Web of Science, ScienceDirect, and PubMed. These indexes were chosen because they offer enough coverage and linkages to numerous papers in the biological field. A total of 65 articles were added to the final list. The inclusion and exclusion criteria were specified. Of the 65 publications, 42 are clinical applications of DL in omics data. Furthermore, 16 out of 65 articles comprised the review publications based on single- and multi-omics data from the proposed taxonomy. Finally, only a small number of articles (7/65) were included in papers focusing on comparative analysis and guidelines. The use of DL in studying omics data presented several obstacles related to DL itself, preprocessing procedures, datasets, model validation, and testbed applications. Numerous relevant investigations were performed to address these issues. Unlike other review papers, our study distinctly reflects different observations on omics with DL model areas. We believe that the result of this study can be a useful guideline for practitioners who look for a comprehensive view of the role of DL in omics data analysis.
Collapse
Affiliation(s)
- Mazin Abed Mohammed
- College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq
- eVIDA Lab, University of Deusto, 48007 Bilbao, Spain
| | - Karrar Hameed Abdulkareem
- College of Agriculture, Al-Muthanna University, Samawah 66001, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Ahmed M. Dinar
- Computer Engineering Department, University of Technology- Iraq, Baghdad 19006, Iraq
| | | |
Collapse
|
8
|
Hao Y, Jing XY, Sun Q. Joint learning sample similarity and correlation representation for cancer survival prediction. BMC Bioinformatics 2022; 23:553. [PMID: 36536289 PMCID: PMC9761951 DOI: 10.1186/s12859-022-05110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As a highly aggressive disease, cancer has been becoming the leading death cause around the world. Accurate prediction of the survival expectancy for cancer patients is significant, which can help clinicians make appropriate therapeutic schemes. With the high-throughput sequencing technology becoming more and more cost-effective, integrating multi-type genome-wide data has been a promising method in cancer survival prediction. Based on these genomic data, some data-integration methods for cancer survival prediction have been proposed. However, existing methods fail to simultaneously utilize feature information and structure information of multi-type genome-wide data. RESULTS We propose a Multi-type Data Joint Learning (MDJL) approach based on multi-type genome-wide data, which comprehensively exploits feature information and structure information. Specifically, MDJL exploits correlation representations between any two data types by cross-correlation calculation for learning discriminant features. Moreover, based on the learned multiple correlation representations, MDJL constructs sample similarity matrices for capturing global and local structures across different data types. With the learned discriminant representation matrix and fused similarity matrix, MDJL constructs graph convolutional network with Cox loss for survival prediction. CONCLUSIONS Experimental results demonstrate that our approach substantially outperforms established integrative methods and is effective for cancer survival prediction.
Collapse
Affiliation(s)
- Yaru Hao
- grid.49470.3e0000 0001 2331 6153School of Computer Science, Wuhan University, Wuhan, China
| | - Xiao-Yuan Jing
- grid.49470.3e0000 0001 2331 6153School of Computer Science, Wuhan University, Wuhan, China ,grid.459577.d0000 0004 1757 6559Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis and School of Computer, Guangdong University of Petrochemical Technology, Maoming, China ,grid.41156.370000 0001 2314 964XState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Qixing Sun
- grid.49470.3e0000 0001 2331 6153School of Computer Science, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis. Cancers (Basel) 2022; 14:cancers14133215. [PMID: 35804988 PMCID: PMC9265023 DOI: 10.3390/cancers14133215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The rise of Big Data, the widespread use of Machine Learning, and the cheapening of omics techniques have allowed for the creation of more sophisticated and accurate models in biomedical research. This article presents the state-of-the-art predictive models of cancer prognosis that use multimodal data, considering clinical, molecular (omics and non-omics), and image data. The subject of study, the data modalities used, the data processing and modelling methods applied, the validation strategies involved, the integration strategies encompassed, and the evolution of prognostic predictive models are discussed. Finally, we discuss challenges and opportunities in this field of cancer research, with great potential impact on the clinical management of patients and, by extension, on the implementation of personalised and precision medicine. Abstract Cancer is one of the most detrimental diseases globally. Accordingly, the prognosis prediction of cancer patients has become a field of interest. In this review, we have gathered 43 state-of-the-art scientific papers published in the last 6 years that built cancer prognosis predictive models using multimodal data. We have defined the multimodality of data as four main types: clinical, anatomopathological, molecular, and medical imaging; and we have expanded on the information that each modality provides. The 43 studies were divided into three categories based on the modelling approach taken, and their characteristics were further discussed together with current issues and future trends. Research in this area has evolved from survival analysis through statistical modelling using mainly clinical and anatomopathological data to the prediction of cancer prognosis through a multi-faceted data-driven approach by the integration of complex, multimodal, and high-dimensional data containing multi-omics and medical imaging information and by applying Machine Learning and, more recently, Deep Learning techniques. This review concludes that cancer prognosis predictive multimodal models are capable of better stratifying patients, which can improve clinical management and contribute to the implementation of personalised medicine as well as provide new and valuable knowledge on cancer biology and its progression.
Collapse
|
10
|
Divate M, Tyagi A, Richard DJ, Prasad PA, Gowda H, Nagaraj SH. Deep Learning-Based Pan-Cancer Classification Model Reveals Tissue-of-Origin Specific Gene Expression Signatures. Cancers (Basel) 2022; 14:cancers14051185. [PMID: 35267493 PMCID: PMC8909043 DOI: 10.3390/cancers14051185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer tissue-of-origin specific biomarkers are needed for effective diagnosis, monitoring, and treatment of cancers. In this study, we analyzed transcriptomics data from 37 cancer types provided by The Cancer Genome Atlas (TCGA) to identify cancer tissue-of-origin specific gene expression signatures. We developed a deep neural network model to classify cancers based on gene expression data. The model achieved a predictive accuracy of >97% across cancer types indicating the presence of distinct cancer tissue-of-origin specific gene expression signatures. We interpreted the model using Shapley additive explanations to identify specific gene signatures that significantly contributed to cancer-type classification. We evaluated the model and the validity of gene signatures using an independent test data set from the International Cancer Genome Consortium. In conclusion, we present a robust neural network model for accurate classification of cancers based on gene expression data and also provide a list of gene signatures that are valuable for developing biomarker panels for determining cancer tissue-of-origin. These gene signatures serve as valuable biomarkers for determining tissue-of-origin for cancers of unknown primary.
Collapse
Affiliation(s)
- Mayur Divate
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (M.D.); (D.J.R.)
| | - Aayush Tyagi
- Indian Institute of Technology, IIT Delhi Main Rd., IIT Campus, Hauz Khas, New Delhi 110016, India; (A.T.); (P.A.P.)
| | - Derek J. Richard
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (M.D.); (D.J.R.)
- Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Prathosh A. Prasad
- Indian Institute of Technology, IIT Delhi Main Rd., IIT Campus, Hauz Khas, New Delhi 110016, India; (A.T.); (P.A.P.)
- Department of Electrical Communication Engineering, Indian Institute of Science, Devasandra Layout, Bengaluru 560012, India
| | - Harsha Gowda
- QIMR Berghofer Medical Research Institute, 300 Herston Rd., Brisbane, QLD 4006, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Faculty of Medicine, The University of Queensland Mayne Medical School, 20 Weightman Street, Brisbane, QLD 4006, Australia
- Correspondence: (H.G.); (S.H.N.); Tel.: +61-733-620-452 (H.G.); +61-731-386-085 (S.H.N.)
| | - Shivashankar H. Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (M.D.); (D.J.R.)
- Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
- Correspondence: (H.G.); (S.H.N.); Tel.: +61-733-620-452 (H.G.); +61-731-386-085 (S.H.N.)
| |
Collapse
|