1
|
Ferreira Nunes M, Plácido da Silva H, Raposo L, Rodrigues F. Design and Evaluation of a Novel Venturi-Based Spirometer for Home Respiratory Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:5622. [PMID: 39275533 PMCID: PMC11398045 DOI: 10.3390/s24175622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
The high cost and limited availability of home spirometers pose a significant barrier to effective respiratory disease management and monitoring. To address this challenge, this paper introduces a novel Venturi-based spirometer designed for home use, leveraging the Bernoulli principle. The device features a 3D-printed Venturi tube that narrows to create a pressure differential, which is measured by a differential pressure sensor and converted into airflow rate. The airflow is then integrated over time to calculate parameters such as the Forced Vital Capacity (FVC) and Forced Expiratory Volume in one second (FEV1). The system also includes a bacterial filter for hygienic use and a circuit board for data acquisition and streaming. Evaluation with eight healthy individuals demonstrated excellent test-retest reliability, with intraclass correlation coefficients (ICCs) of 0.955 for FVC and 0.853 for FEV1. Furthermore, when compared to standard Pulmonary Function Test (PFT) equipment, the spirometer exhibited strong correlation, with Pearson correlation coefficients of 0.992 for FVC and 0.968 for FEV1, and high reliability, with ICCs of 0.987 for FVC and 0.907 for FEV1. These findings suggest that the Venturi-based spirometer could significantly enhance access to spirometry at home. However, further large-scale validation and reliability studies are necessary to confirm its efficacy and reliability for widespread use.
Collapse
Affiliation(s)
- Mariana Ferreira Nunes
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1949-001 Lisbon, Portugal
| | - Hugo Plácido da Silva
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1949-001 Lisbon, Portugal
- IT-Instituto de Telecomunicações, Instituto Superior Técnico, 1949-001 Lisbon, Portugal
- LUMLIS-Lisbon Unit for Learning and Intelligent Systems, 1049-001 Lisbon, Portugal
| | - Liliana Raposo
- Pulmonology Department, Santa Maria Local Health Unit, 1769-001 Lisbon, Portugal
- Cardiopneumology Teaching Department, Higher School of Health of The Portuguese Red Cross, 1300-125 Lisbon, Portugal
| | - Fátima Rodrigues
- Pulmonology Department, Santa Maria Local Health Unit, 1769-001 Lisbon, Portugal
- Institute of Environmnetal Health, Lisbon Medical School, Lisbon University, 1649-026 Lisbon, Portugal
| |
Collapse
|
2
|
Vaussenat F, Bhattacharya A, Payette J, Benavides-Guerrero JA, Perrotton A, Gerlein LF, Cloutier SG. Continuous Critical Respiratory Parameter Measurements Using a Single Low-Cost Relative Humidity Sensor: Evaluation Study. JMIR BIOMEDICAL ENGINEERING 2023; 8:e47146. [PMID: 38875670 PMCID: PMC11041423 DOI: 10.2196/47146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Accurate and portable respiratory parameter measurements are critical for properly managing chronic obstructive pulmonary diseases (COPDs) such as asthma or sleep apnea, as well as controlling ventilation for patients in intensive care units, during surgical procedures, or when using a positive airway pressure device for sleep apnea. OBJECTIVE The purpose of this research is to develop a new nonprescription portable measurement device that utilizes relative humidity sensors (RHS) to accurately measure key respiratory parameters at a cost that is approximately 10 times less than the industry standard. METHODS We present the development, implementation, and assessment of a wearable respiratory measurement device using the commercial Bosch BME280 RHS. In the initial stage, the RHS was connected to the pneumotach (PNT) gold standard device via its external connector to gather breathing metrics. Data collection was facilitated using the Arduino platform with a Bluetooth Low Energy connection, and all measurements were taken in real time without any additional data processing. The device's efficacy was tested with 7 participants (5 men and 2 women), all in good health. In the subsequent phase, we specifically focused on comparing breathing cycle and respiratory rate measurements and determining the tidal volume by calculating the region between inhalation and exhalation peaks. Each participant's data were recorded over a span of 15 minutes. After the experiment, detailed statistical analysis was conducted using ANOVA and Bland-Altman to examine the accuracy and efficiency of our wearable device compared with the traditional methods. RESULTS The perfused air measured with the respiratory monitor enables clinicians to evaluate the absolute value of the tidal volume during ventilation of a patient. In contrast, directly connecting our RHS device to the surgical mask facilitates continuous lung volume monitoring. The results of the 1-way ANOVA showed high P values of .68 for respiratory volume and .89 for respiratory rate, which indicate that the group averages with the PNT standard are equivalent to those with our RHS platform, within the error margins of a typical instrument. Furthermore, analysis utilizing the Bland-Altman statistical method revealed a small bias of 0.03 with limits of agreement (LoAs) of -0.25 and 0.33. The RR bias was 0.018, and the LoAs were -1.89 and 1.89. CONCLUSIONS Based on the encouraging results, we conclude that our proposed design can be a viable, low-cost wearable medical device for pulmonary parametric measurement to prevent and predict the progression of pulmonary diseases. We believe that this will encourage the research community to investigate the application of RHS for monitoring the pulmonary health of individuals.
Collapse
Affiliation(s)
- Fabrice Vaussenat
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | - Abhiroop Bhattacharya
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | - Julie Payette
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | | | - Alexandre Perrotton
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | - Luis Felipe Gerlein
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | - Sylvain G Cloutier
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| |
Collapse
|
3
|
Caldirola D, Daccò S, Grassi M, Alciati A, Sbabo WM, De Donatis D, Martinotti G, De Berardis D, Perna G. Cardiorespiratory Assessments in Panic Disorder Facilitated by Wearable Devices: A Systematic Review and Brief Comparison of the Wearable Zephyr BioPatch with the Quark-b2 Stationary Testing System. Brain Sci 2023; 13:brainsci13030502. [PMID: 36979312 PMCID: PMC10046237 DOI: 10.3390/brainsci13030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Abnormalities in cardiorespiratory measurements have repeatedly been found in patients with panic disorder (PD) during laboratory-based assessments. However, recordings performed outside laboratory settings are required to test the ecological validity of these findings. Wearable devices, such as sensor-imbedded garments, biopatches, and smartwatches, are promising tools for this purpose. We systematically reviewed the evidence for wearables-based cardiorespiratory assessments in PD by searching for publications on the PubMed, PsycINFO, and Embase databases, from inception to 30 July 2022. After the screening of two-hundred and twenty records, eight studies were included. The limited number of available studies and critical aspects related to the uncertain reliability of wearables-based assessments, especially concerning respiration, prevented us from drawing conclusions about the cardiorespiratory function of patients with PD in daily life. We also present preliminary data on a pilot study conducted on volunteers at the Villa San Benedetto Menni Hospital for evaluating the accuracy of heart rate (HR) and breathing rate (BR) measurements by the wearable Zephyr BioPatch compared with the Quark-b2 stationary testing system. Our exploratory results suggested possible BR and HR misestimation by the wearable Zephyr BioPatch compared with the Quark-b2 system. Challenges of wearables-based cardiorespiratory assessment and possible solutions to improve their reliability and optimize their significant potential for the study of PD pathophysiology are presented.
Collapse
Affiliation(s)
- Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Italy
- Humanitas San Pio X, Personalized Medicine Center for Anxiety and Panic Disorders, Via Francesco Nava 31, 20159 Milan, Italy
| | - Silvia Daccò
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Italy
| | - Massimiliano Grassi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Alessandra Alciati
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Italy
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - William M. Sbabo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Domenico De Donatis
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Humanitas San Pio X, Personalized Medicine Center for Anxiety and Panic Disorders, Via Francesco Nava 31, 20159 Milan, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Domenico De Berardis
- Department of Mental Health, NHS, ASL 4 Teramo, Contrada Casalena, 64100 Teramo, Italy
- Correspondence:
| | - Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Italy
- Humanitas San Pio X, Personalized Medicine Center for Anxiety and Panic Disorders, Via Francesco Nava 31, 20159 Milan, Italy
| |
Collapse
|