1
|
Suzuki M, Funasaka N, Yoshimura K, Inamori D, Watanabe Y, Ozaki M, Hosono M, Shindo H, Kawamura K, Tatsukawa T, Yoshioka M. Comprehensive expression analysis of hormone-like substances in the subcutaneous adipose tissue of the common bottlenose dolphin Tursiops truncatus. Sci Rep 2024; 14:12515. [PMID: 38822022 PMCID: PMC11143283 DOI: 10.1038/s41598-024-63018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Marine mammals possess a specific subcutaneous fat layer called blubber that not only insulates and stores energy but also secretes bioactive substances. However, our understanding of its role as a secretory organ in cetaceans is incomplete. To exhaustively explore the hormone-like substances produced in dolphin subcutaneous adipose tissue, we performed seasonal blubber biopsies from captive female common bottlenose dolphins (Tursiops truncatus; N = 8, n = 32) and analyzed gene expression via transcriptomics. Analysis of 186 hormone-like substances revealed the expression of 58 substances involved in regulating energy metabolism, tissue growth/differentiation, vascular regulation, immunity, and ion/mineral homeostasis. Adiponectin was the most abundantly expressed gene, followed by angiopoietin protein like 4 and insulin-like growth factor 2. To investigate the endocrine/secretory responses of subcutaneous adipose tissue to the surrounding temperature, we subsequently compared the mean expression levels of the genes during the colder and warmer seasons. In the colder season, molecules associated with appetite suppression, vasodilation, and tissue proliferation were relatively highly expressed. In contrast, warmer seasons enhanced the expression of substances involved in tissue remodeling, immunity, metabolism, and vasoconstriction. These findings suggest that dolphin blubber may function as an active secretory organ involved in the regulation of metabolism, appetite, and tissue reorganization in response to changes in the surrounding environment, providing a basis for elucidating the function of hormone-like substances in group-specific evolved subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Miwa Suzuki
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Noriko Funasaka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuma Yoshimura
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Daiki Inamori
- Taiji Whale Museum, Higashimuro, Wakayama, 649-5171, Japan
| | - Yurie Watanabe
- Taiji Whale Museum, Higashimuro, Wakayama, 649-5171, Japan
| | - Miki Ozaki
- Adventure World, Nishimuro, Wakayama, 649-2201, Japan
| | | | - Hideaki Shindo
- Shimonoseki Marine Science Museum, Shimonoseki, Yamaguchi, 750-0036, Japan
| | - Keiko Kawamura
- Shimonoseki Marine Science Museum, Shimonoseki, Yamaguchi, 750-0036, Japan
| | | | - Motoi Yoshioka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
2
|
Monteiro JP, Ferreira HB, Melo T, Flanagan C, Urbani N, Neves J, Domingues P, Domingues MR. The plasma phospholipidome of the bottlenose dolphin ( Tursiops truncatus) is modulated by both sex and developmental stage. Mol Omics 2023; 19:35-47. [PMID: 36314173 DOI: 10.1039/d2mo00202g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipidomics represent a valid complementary tool to the biochemical analysis of plasma in humans. However, in cetaceans, these tools have been unexplored. Here, we evaluated how the plasma lipid composition of Tursiops truncatus is modulated by developmental stage and sex, aiming at a potential use of lipidomics in integrated strategies to monitor cetacean health. We characterized the fatty acid profile and detected a total of 26 fatty acids in T. truncatus plasma. The most abundant fatty acids were palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1n-9). Interestingly, there are consistent differences between the fatty acid profile of mature female and mature male specimens. Phospholipidome analysis identified 320 different lipid species belonging to phosphatidylcholine (PC, 105 lipid species), lysophosphatidylcholine (42), phosphatidylethanolamine (PE, 67), lysophosphatidylethanolamine (18), phosphatidylglycerol (14), lysophosphatidylglycerol (8), phosphatidylinositol (14), lysophosphatidylinositol (2), phosphatidylserine (3), sphingomyelin (45) and ceramides (2) classes. The statistical analysis of the phospholipidome showed that its composition allows discriminating mature animals between sexes and mature males from immature males. Notably, discrimination between sexes is mainly determined by the contents of PE plasmalogens and lysophospholipids (LPC and LPE), while the differences between mature and immature male animals were mainly determined by the levels of PC lipids. This is the first time that a correlation between developmental stage and sex and the lipid composition of the plasma has been established in cetaceans. Being able to discern between age and sex-related changes is an encouraging step towards using these tools to also detect differences related to disease/dysfunction processes.
Collapse
Affiliation(s)
- João P Monteiro
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Helena B Ferreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Monteiro JP, Maciel E, Melo T, Flanagan C, Urbani N, Neves J, Domingues MR. The plasma phospholipidome of Tursiops truncatus: From physiological insight to the design of prospective tools for managed cetacean monitorization. Lipids 2021; 56:461-473. [PMID: 34036588 DOI: 10.1002/lipd.12307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023]
Abstract
Plasma biochemical analysis remains one of the established ways of monitoring captive marine mammal health. More recently, complementary plasma lipidomic analysis has proven to be a valid tool in disease diagnosis and prevention, with the potential to validate and complement common biochemical analysis, providing a more integrative approach. In this study, we thoroughly characterized the plasma polar lipid content of Tursiops truncatus, the most common cetacean species held under human care. Our results showed that phosphatidylcholine, lysophosphatidylcholine, and sphingomyelins (CerPCho) are the most represented phospholipid classes in T. truncatus plasma. Palmitic, oleic, and stearic acids are the major fatty acid (FA) present esterified to the plasma polar lipids of this species, although some n-3 species are also remarkably present, namely eicosapentaenoic and docosahexaenoic acids. The polar lipidome identified by HILIC LC-MS allowed identifying 304 different lipid species. These species belong to the phosphatidylcholine (103 lipid species), lysophosphatidylcholine (35), phosphatidylethanolamine (71), lysophosphatidylethanolamine (20), phosphatidylglycerol (13), lysophosphatidylglycerol (5), phosphatidylinositol (15), lysophosphatidylinositol (3), phosphatidylserine (6) lysophosphatidylserine (1), and sphimgomyelin (32) classes. This was the first time that the dolphin plasma phospholipid profile was characterized, providing a knowledge that will be important to further understand lipid metabolism and physiological regulation in small cetaceans. Furthermore, this study proved the practicability of the use of plasma lipid profiling for health assessment in marine mammals under human care.
Collapse
Affiliation(s)
- João P Monteiro
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Elisabete Maciel
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Field BC, Gordillo R, Scherer PE. The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Front Endocrinol (Lausanne) 2020; 11:569250. [PMID: 33133017 PMCID: PMC7564167 DOI: 10.3389/fendo.2020.569250] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunction is intertwined with the pathophysiology of both diabetes and cardiovascular disease. Recently, one particular lipid class has been shown to influence the development and sustainment of these diseases: ceramides. As a subtype of sphingolipids, these species are particularly central to many sphingolipid pathways. Increased levels of ceramides are known to correlate with impaired cardiovascular and metabolic health. Furthermore, the interaction between ceramides and adipokines, most notably adiponectin and leptin, appears to play a role in the pathophysiology of these conditions. Adiponectin appears to counteract the detrimental effects of elevated ceramides, largely through activation of the ceramidase activity of its receptors. Elevated ceramides appear to worsen leptin resistance, which is an important phenomenon in the pathophysiology of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Bianca C. Field
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Mancia A. On the revolution of cetacean evolution. Mar Genomics 2018; 41:1-5. [PMID: 30154054 DOI: 10.1016/j.margen.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/13/2023]
Abstract
The order of Cetacea with 88 species including Odontoceti (or toothed whales) and Mysticeti (or baleen whales) is the most specialized and diversified group of mammals. The blue whale with a maximum recorded length of 29.9 m for 173 t of weight is the largest animal known to have ever existed, and any dolphin's brain is most powerful and complex than any other brain in the animal kingdom, second only to primate's. Nevertheless, Cetacea are mammals that re-entered the oceans only a little over 50 million years ago, a relatively short time on the evolutionary scale. During this time cetaceans and humans have developed marked morphological and behavioral differences, yet their genomes show a high level of similarity. This present review is focused on the description and significance of newly accessible cetacean genome tools and information, and their relevance in the study of the evolution of successful phenotypic adaptations associated to mammal's marine existence, and their applicability to the unresolved disease mechanisms in humans.
Collapse
Affiliation(s)
- Annalaura Mancia
- University of Ferrara, Department of Life Sciences and Biotechnology, Ferrara 44121, Italy.
| |
Collapse
|
6
|
Proteomic Analysis of Non-depleted Serum Proteins from Bottlenose Dolphins Uncovers a High Vanin-1 Phenotype. Sci Rep 2016; 6:33879. [PMID: 27667588 PMCID: PMC5036180 DOI: 10.1038/srep33879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
Targeted approaches have been widely used to help explain physiological adaptations, but few studies have used non-targeted omics approaches to explore differences between diving marine mammals and terrestrial mammals. A rank comparison of undepleted serum proteins from common bottlenose dolphins (Tursiops truncatus) and pooled normal human serum led to the discovery of 11 proteins that appeared exclusive to dolphin serum. Compared to the comprehensive human plasma proteome, 5 of 11 serum proteins had a differential rank greater than 200. One of these proteins, Vanin-1, was quantified using parallel reaction monitoring in dolphins under human care and free-ranging dolphins. Dolphin serum Vanin-1 ranged between 31–106 μg/ml, which is 20–1000 times higher than concentrations reported for healthy humans. Serum Vanin-1 was also higher in dolphins under human care compared to free-ranging dolphins (64 ± 16 vs. 47 ± 12 μg/ml P < 0.05). Vanin-1 levels positively correlated with liver enzymes AST and ALT, and negatively correlated with white blood cell counts and fibrinogen in free-ranging dolphins. Major differences exist in the circulating blood proteome of the bottlenose dolphin compared to terrestrial mammals and exploration of these differences in bottlenose dolphins and other marine mammals may identify veiled protective strategies to counter physiological stress.
Collapse
|