1
|
Göntér K, László S, Tékus V, Dombi Á, Fábián K, Pál S, Pozsgai G, Botz L, Wagner Ö, Pintér E, Hajna Z. New generation capsaicin-diclofenac containing, silicon-based transdermal patch provides prolonged analgesic effect in acute and chronic pain models. Eur J Pharm Sci 2025; 207:107035. [PMID: 39922237 DOI: 10.1016/j.ejps.2025.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE Pain is one of the major public health burdens worldwide, however, conventional analgesics are often ineffective. Capsaicin-the active compound of Capsicum species, being responsible for their pungency-has been part of traditional medicine long ago. Capsaicin is a natural agonist of the Transient Receptor Potential Vanilloid 1 receptor-localized on capsaicin-sensitive sensory neurons and strongly involved in pain transmission-, and has been in focus of analgesic drug research for many years. In this study, we aimed to develop a sustained release transdermal patch (transdermal therapeutic system, TTS) combining the advantages of low-concentration capsaicin and diclofenac embedded in an innovative structure, as well as to perform complex preclinical investigations of its analgesic effect. METHODS Drug delivery properties of the TTS were investigated with Franz cell and flow-through cell tests. Analgesic effect of the TTS was examined in in vivo models of acute postoperative and inflammatory, chronic neuropathic and osteoarthritic pain. RESULTS Modified silicone polymer matrix-based TTS containing low-concentration capsaicin and diclofenac has been developed, releasing both compounds according to zero-order kinetics. Moreover, capsaicin and diclofenac facilitated the liberation of each other. Combined TTS significantly reduced acute postoperative and inflammatory pain, as well as chronic neuropathic and osteoarthritic pain. Interestingly, in acute postoperative and chronic osteoarthritic pain, capsaicin prolonged and potentiated the pain-relieving effect of diclofenac. CONCLUSIONS New generation combined low-concentration capsaicin-diclofenac containing TTS can be an effective therapeutic tool in acute and chronic pain states involving neuropathic and inflammatory components.
Collapse
Affiliation(s)
- Kitti Göntér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary; HUN-REN, Chronic Pain Research Group, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| | - Szabolcs László
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary; Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary; HUN-REN, Computation-Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624, Pécs, Hungary
| | - Katalin Fábián
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624, Pécs, Hungary
| | - Szilárd Pál
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624, Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624, Pécs, Hungary
| | - Lajos Botz
- Institute of Clinical Pharmacy, Clinical Centre, University of Pécs, Honvéd str. 3, H-7624, Pécs, Hungary
| | - Ödön Wagner
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary; HUN-REN, Chronic Pain Research Group, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary.
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary; HUN-REN, Chronic Pain Research Group, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| |
Collapse
|
2
|
Yang M, Lu H, Xiao N, Qin Y, Sun L, Sun R. Fumigation with dimethyl trisulfide to inhibit Aspergillus flavus growth, aflatoxin B1 production and virulence. FEMS Microbiol Lett 2024; 371:fnae102. [PMID: 39577849 DOI: 10.1093/femsle/fnae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/02/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024] Open
Abstract
Aspergillus flavus is a common saprophytic aerobic fungus in oil crops that poses a serious threat worldwide with the carcinogenic aflatoxin. Prevention of aflatoxin B1 contamination has great significance to ensure food safety and reduce the economic loss. The present work focuses on the antagonistic activity against A. flavus growth in peanuts by fumigation with dimethyl trisulfide. The results indicated that dimethyl trisulfide exhibits great antifungal activity against A. flavus. The conidial germination and mycelial growth of A. flavus were completely suppressed after exposure to 15 and 20 µl/l of dimethyl trisulfide, respectively. Numerous deformed conidia were found after exposure to dimethyl trisulfide at high concentration (≥20 µl/l). Scanning electron microscope observation demonstrated that dimethyl trisulfide induced severely shrinking mycelia of A. flavus. The results of OD-260 nm absorption and rhodamine-123 fluorescent staining indicated that cell membrane and mitochondria may be legitimate antifungal targets of dimethyl trisulfide. Dimethyl triethyl has a significant inhibitory effect on A. flavus infection in peanuts. In addition, dimethyl trisulfide could reduce the production of aflatoxin B1 via down-regulation of toxin synthesis and regulatory gene expression. Dimethyl trisulfide can be a tremendous potential agent for the biological control of A. flavus and deepened our understanding of the anti-fungal mechanisms of volatile organic compounds.
Collapse
Affiliation(s)
- Mingguan Yang
- College of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| | - Honggui Lu
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250014, P.R. China
| | - Nan Xiao
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250014, P.R. China
| | - Yongjian Qin
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250014, P.R. China
| | - Lei Sun
- Economic Forest Institute, Shandong Academy of Forestry Sciences, Jinan 250014, P.R. China
| | - Rui Sun
- College of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| |
Collapse
|
3
|
Investigation of the Role of the TRPA1 Ion Channel in Conveying the Effect of Dimethyl Trisulfide on Vascular and Histological Changes in Serum-Transfer Arthritis. Pharmaceuticals (Basel) 2022; 15:ph15060671. [PMID: 35745590 PMCID: PMC9229242 DOI: 10.3390/ph15060671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases. Its therapy is often challenging, even in the era of biologicals. Previously, we observed the anti-inflammatory effects of garlic-derived organic polysulfide dimethyl trisulfide (DMTS). Some of these effects were mediated by activation of the TRPA1 ion channel. TRPA1 was mostly expressed in a subset of nociceptor neurons. We decided to investigate the action of DMTS in K/BxN serum-transfer arthritis, which is a relevant model of RA. TRPA1 gene knockout (KO) and wild-type (WT) mice were used. The interaction of DMTS and TRPA1 was examined using a patch clamp in CHO cells. Arthritis was characterized by mechanical hyperalgesia, paw swelling, movement range of the ankle joint, hanging performance, plasma extravasation rate, myeloperoxidase activity, and histological changes in the tibiotarsal joint. DMTS activated TRPA1 channels dose-dependently. DMTS treatment reduced paw swelling and plasma extravasation in both TRPA1 WT and KO animals. DMTS-treated TRPA1 KO animals developed milder collagen deposition in the inflamed joints than WT ones. TRPA1 WT mice did not exhibit significant cartilage damage compared to ones administered a vehicle. We concluded that DMTS and related substances might evolve into novel complementary therapeutic aids for RA patients.
Collapse
|
4
|
Hu F, Song X, Long D. Transient receptor potential ankyrin 1 and calcium: Interactions and association with disease (Review). Exp Ther Med 2021; 22:1462. [PMID: 34737802 PMCID: PMC8561754 DOI: 10.3892/etm.2021.10897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium (Ca2+) is an essential signaling molecule in all cells. It is involved in numerous fundamental functions, including cell life and death. Abnormal regulation of Ca2+ homeostasis may cause human diseases. Usually known as a member of the transient receptor potential (TRP) family, TRP ankyrin 1 (TRPA1) is the only member of the ankyrin subfamily identified in mammals so far and widely expressed in cells and tissues. As it is involved in numerous sensory disorders such as pain and pruritus, TRPA1 is a potential target for the treatment of neuropathy. The functions of TRP family members are closely related to Ca2+. TRPA1 has a high permeability to Ca2+, sodium and potassium ions as a non-selective cation channel and the Ca2+ influx mediated by TRPA1 is involved in a variety of biological processes. In the present review, research on the relationship between the TRPA1 channel and Ca2+ ions and their interaction in disease-associated processes was summarised. The therapeutic potential of the TRPA1 channel is highlighted, which is expected to become a novel direction for the prevention and treatment of health conditions such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fangyan Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohua Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
5
|
Neumann WL, Sandoval KE, Mobayen S, Minaeian M, Kukielski SG, Srabony KN, Frare R, Slater O, Farr SA, Niehoff ML, Hospital A, Kontoyianni M, Crider AM, Witt KA. Synthesis and structure-activity relationships of 3,4,5-trisubstituted-1,2,4-triazoles: high affinity and selective somatostatin receptor-4 agonists for Alzheimer's disease treatment. RSC Med Chem 2021; 12:1352-1365. [PMID: 34458738 DOI: 10.1039/d1md00044f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Somatostatin receptor-4 (SST4) is highly expressed in brain regions affiliated with learning and memory. SST4 agonist treatment may act to mitigate Alzheimer's disease (AD) pathology. An integrated approach to SST4 agonist lead optimization is presented herein. High affinity and selective agonists with biological efficacy were identified through iterative cycles of a structure-based design strategy encompassing computational methods, chemistry, and preclinical pharmacology. 1,2,4-Triazole derivatives of our previously reported hit (4) showed enhanced SST4 binding affinity, activity, and selectivity. Thirty-five compounds showed low nanomolar range SST4 binding affinity, 12 having a K i < 1 nM. These compounds showed >500-fold affinity for SST4 as compared to SST2A. SST4 activities were consistent with the respective SST4 binding affinities (EC50 < 10 nM for 34 compounds). Compound 208 (SST4 K i = 0.7 nM; EC50 = 2.5 nM; >600-fold selectivity over SST2A) display a favorable physiochemical profile, and was advanced to learning and memory behavior evaluations in the senescence accelerated mouse-prone 8 model of AD-related cognitive decline. Chronic administration enhanced learning with i.p. dosing (1 mg kg-1) compared to vehicle. Chronic administration enhanced memory with both i.p. (0.01, 0.1, 1 mg kg-1) and oral (0.01, 10 mg kg-1) dosing compared to vehicle. This study identified a novel series of SST4 agonists with high affinity, selectivity, and biological activity that may be useful in the treatment of AD.
Collapse
Affiliation(s)
- William L Neumann
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Karin E Sandoval
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Shirin Mobayen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Mahsa Minaeian
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Stephen G Kukielski
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Khush N Srabony
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Rafael Frare
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Olivia Slater
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Susan A Farr
- Research and Development Service, VA Medical Center, Division of Geriatric Medicine, Saint Louis University School of Medicine 1402 South Grand Boulevard, M238 St Louis MO 63104 USA
| | - Michael L Niehoff
- Research and Development Service, VA Medical Center, Division of Geriatric Medicine, Saint Louis University School of Medicine 1402 South Grand Boulevard, M238 St Louis MO 63104 USA
| | - Audrey Hospital
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Maria Kontoyianni
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - A Michael Crider
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| | - Ken A Witt
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
| |
Collapse
|
6
|
Bortolucci WDC, Raimundo KF, Fernandez CMM, Calhelha RC, Ferreira ICFR, Barros L, Gonçalves JE, Linde GA, Colauto NB, Gazim ZC. Cytotoxicity and anti-inflammatory activities of Gallesia integrifolia (Phytolaccaceae) fruit essential oil. Nat Prod Res 2021; 36:2878-2883. [PMID: 34000931 DOI: 10.1080/14786419.2021.1925270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The chemical composition of Gallesia integrifolia fruits essential oil was obtained by hydrodistillation using a modified Clevenger apparatus was investigated by gas chromatography coupled to mass spectrometry (GC/MS). In addition, the cytotoxicity activity against human tumor cell lines MCF-7 (breast adenocarcinoma), NCI-H460 (large cell lung carcinoma), HeLa (cervical carcinoma), and HepG2 (hepatocellular carcinoma), and non-tumor PLP2 (porcine liver primary cells) as well as the anti-inflammatory action was proposal. The compounds were predominantly organosulfates (2,8-dithianonane, dimethyl trisulfide, and lenthionine). Anti-inflammatory activity that provides 50% inhibition of nitric oxide production (55 µg/mL) of essential oil of the fruits. It also presents cytotoxic activity against MCF-7 (GI50 = 66 µg/mL), NCI-H-460 (GI50 = 147 µg/mL), HeLa (GI50 = 182 µg/mL) and HepG2 (GI50 = 240 µg/mL). The essential oil is more active in tumor cells than in non-tumor cells and the GI50 values for essential oil reported in our work support future studies.
Collapse
Affiliation(s)
- Wanessa de Campos Bortolucci
- Programa de Pós-Graduação em Biotecnologia aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, Umuarama, Paraná, Brazil
| | | | - Carla Maria Mariano Fernandez
- Programa de Pós-Graduação em Biotecnologia aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, Umuarama, Paraná, Brazil
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - José Eduardo Gonçalves
- Programa de Pós-Graduação em Tecnologias Limpas e Cesumar Instituto de Ciências, tecnologia e Inovação, UniCesumar, Maringá, Paraná, Brazil
| | - Giani Andrea Linde
- Programa de Pós-Graduação em Biotecnologia aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, Umuarama, Paraná, Brazil
| | - Nelson Barros Colauto
- Programa de Pós-Graduação em Biotecnologia aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, Umuarama, Paraná, Brazil
| | - Zilda Cristiani Gazim
- Programa de Pós-Graduação em Biotecnologia aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, Umuarama, Paraná, Brazil
| |
Collapse
|
7
|
Dimethyl Trisulfide Diminishes Traumatic Neuropathic Pain Acting on TRPA1 Receptors in Mice. Int J Mol Sci 2021; 22:ijms22073363. [PMID: 33806000 PMCID: PMC8036544 DOI: 10.3390/ijms22073363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Pharmacotherapy of neuropathic pain is still challenging. Our earlier work indicated an analgesic effect of dimethyl trisulfide (DMTS), which was mediated by somatostatin released from nociceptor nerve endings acting on SST4 receptors. Somatostatin release occurred due to TRPA1 ion channel activation. In the present study, we investigated the effect of DMTS in neuropathic pain evoked by partial ligation of the sciatic nerve in mice. Expression of the mRNA of Trpa1 in murine dorsal-root-ganglion neurons was detected by RNAscope. Involvement of TRPA1 ion channels and SST4 receptors was tested with gene-deleted animals. Macrophage activity at the site of the nerve lesion was determined by lucigenin bioluminescence. Density and activation of microglia in the spinal cord dorsal horn was verified by immunohistochemistry and image analysis. Trpa1 mRNA is expressed in peptidergic and non-peptidergic neurons in the dorsal root ganglion. DMTS ameliorated neuropathic pain in Trpa1 and Sstr4 WT mice, but not in KO ones. DMTS had no effect on macrophage activity around the damaged nerve. Microglial density in the dorsal horn was reduced by DMTS independently from TRPA1. No effect on microglial activation was detected. DMTS might offer a novel therapeutic opportunity in the complementary treatment of neuropathic pain.
Collapse
|
8
|
Cai J, Nash WT, Okusa MD. Ultrasound for the treatment of acute kidney injury and other inflammatory conditions: a promising path toward noninvasive neuroimmune regulation. Am J Physiol Renal Physiol 2020; 319:F125-F138. [PMID: 32508112 PMCID: PMC7468827 DOI: 10.1152/ajprenal.00145.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is an important clinical disorder with high prevalence, serious consequences, and limited therapeutic options. Modulation of neuroimmune interaction by nonpharmacological methods is emerging as a novel strategy for treating inflammatory diseases, including AKI. Recently, pulsed ultrasound (US) treatment was shown to protect from AKI by stimulating the cholinergic anti-inflammatory pathway. Because of the relatively simple, portable, and noninvasive nature of US procedures, US stimulation may be a valuable therapeutic option for treating inflammatory conditions. This review discusses potential impacts of US bioeffects on the nervous system and how this may generate feedback onto the immune system. We also discuss recent evidence supporting the use of US as a means to treat AKI and other inflammatory diseases.
Collapse
Affiliation(s)
- Jieru Cai
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - William T Nash
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| |
Collapse
|
9
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
10
|
Alavi MS, Shamsizadeh A, Karimi G, Roohbakhsh A. Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: friend or foe? Toxicol Mech Methods 2019; 30:1-18. [PMID: 31409172 DOI: 10.1080/15376516.2019.1652872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been widely studied during the last decade. New studies uncover new features and potential applications for these channels. TRPA1 has a huge distribution all over the human body and has been reported to be involved in different physiological and pathological conditions including cold, pain, and damage sensation. Considering its role, many studies have been devoted to evaluating the role of this channel in the initiation and progression of different toxicities. Accordingly, we reviewed the most recent studies and divided the role of TRPA1 in toxicology into the following sections: neurotoxicity, cardiotoxicity, dermatotoxicity, and pulmonary toxicity. Acetaminophen, heavy metals, tear gases, various chemotherapeutic agents, acrolein, wood smoke particulate materials, particulate air pollution materials, diesel exhaust particles, cigarette smoke extracts, air born irritants, sulfur mustard, and plasticizers are selected compounds and materials with toxic effects that are, at least in part, mediated by TRPA1. Considering the high safety of TRPA1 antagonists and their efficacy to resolve selected toxic or adverse drug reactions, the future of these drugs looks promising.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Bátai IZ, Sár CP, Horváth Á, Borbély É, Bölcskei K, Kemény Á, Sándor Z, Nemes B, Helyes Z, Perkecz A, Mócsai A, Pozsgai G, Pintér E. TRPA1 Ion Channel Determines Beneficial and Detrimental Effects of GYY4137 in Murine Serum-Transfer Arthritis. Front Pharmacol 2019; 10:964. [PMID: 31551776 PMCID: PMC6737045 DOI: 10.3389/fphar.2019.00964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/29/2019] [Indexed: 01/09/2023] Open
Abstract
Modulation of nociception and inflammation by sulfide in rheumatoid arthritis and activation of transient receptor potential ankyrin 1 (TRPA1) ion channels by sulfide compounds are well documented. The present study aims to investigate TRPA1-mediated effects of sulfide donor GYY4137 in K/BxN serum-transfer arthritis, a rodent model of rheumatoid arthritis. TRPA1 and somatostatin sst4 receptor wild-type (WT) and knockout mice underwent K/BxN serum transfer and were treated daily with GYY4137. Functional and biochemical signs of inflammation were recorded, together with histological characterization. These included detection of hind paw mechanical hyperalgesia by dynamic plantar esthesiometry, hind paw volume by plethysmometry, and upside-down hanging time to failure. Hind paw erythema, edema, and passive movement range of tibiotarsal joints were scored. Somatostatin release from sensory nerve endings of TRPA1 wild-type and knockout mice in response to polysulfide was detected by radioimmunoassay. Polysulfide formation from GYY4137 was uncovered by cold cyanolysis. GYY4137 aggravated mechanical hyperalgesia in TRPA1 knockout mice but ameliorated it in wild-type ones. Arthritis score was lowered by GYY4137 in TRPA1 wild-type animals. Increased myeloperoxidase activity, plasma extravasation, and subcutaneous MIP-2 levels of hind paws were detected in TRPA1 knockout mice upon GYY4137 treatment. Genetic lack of sst4 receptors did not alter mechanical hyperalgesia, edema formation, hanging performance, arthritis score, plasma extravasation, or myeloperoxidase activity. TRPA1 WT animals exhibited smaller cartilage destruction upon GYY4137 administration. Sodium polysulfide caused TRPA1-dependent somatostatin release from murine nerve endings. Sulfide released from GYY4137 is readily converted into polysulfide by hypochlorite. Polysulfide potently activates human TRPA1 receptors expressed in Chinese hamster ovary (CHO) cells. According to our data, the protective effect of GYY4137 is mediated by TRPA1, while detrimental actions are independent of the ion channel in the K/BxN serum-transfer arthritis model in mice. At acidic pH in inflamed tissue sulfide is released from GYY4137 and reacts with neutrophil-derived hypochlorite. Resulting polysulfide might be responsible for TRPA1-mediated antinociceptive and anti-inflammatory as well as TRPA1-independent pro-inflammatory effects.
Collapse
Affiliation(s)
- István Z. Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Cecília Pápainé Sár
- Department of Organic and Pharmacological Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Balázs Nemes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Anikó Perkecz
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
12
|
Pozsgai G, Bátai IZ, Pintér E. Effects of sulfide and polysulfides transmitted by direct or signal transduction-mediated activation of TRPA1 channels. Br J Pharmacol 2018; 176:628-645. [PMID: 30292176 PMCID: PMC6346070 DOI: 10.1111/bph.14514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous mediator in various physiological and pathological processes, including neuroimmune modulation, metabolic pathways, cardiovascular system, tumour growth, inflammation and pain. Now the hydrogen polysulfides (H2Sn) have been recognised as signalling molecules modulating ion channels, transcription factors and protein kinases. Transient receptor potential (TRP) cation channels can be activated by mechanical, thermal or chemical triggers. Here, we review the current literature regarding the biological actions of sulfide and polysulfide compounds mediated by TRP channels with special emphasis on the role of TRPA1, best known as ion channels in nociceptors. However, the non‐neuronal TRPA1 channels should also be considered to play regulatory roles. Although sulfide and polysulfide effects in different pathological circumstances and TRPA1‐mediated processes have been investigated intensively, our review attempts to present the first comprehensive overview of the potential crosstalk between TRPA1 channels and sulfide‐activated signalling pathways. Linked Articles This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc
Collapse
Affiliation(s)
- Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - István Zoárd Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Tékus V, Borbély É, Kiss T, Perkecz A, Kemény Á, Horváth J, Kvarda A, Pintér E. Investigation of Lake Hévíz Mineral Water Balneotherapy and Hévíz Mud Treatment in Murine Osteoarthritis and Rheumatoid Arthritis Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4816905. [PMID: 30224931 PMCID: PMC6129852 DOI: 10.1155/2018/4816905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
Arthritic diseases are the most frequent causes of chronic pain and disability. Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and progressive structural joint damage. Osteoarthritis is a degenerative process of the articular cartilage associated with hypertrophic changes in the bone. The aim of the present study was to investigate the anti-inflammatory and analgesic effects of Hévíz thermal water and mud in monosodium iodoacetate- (MIA-) (25 mg/ml, 20 μl i.a.) induced osteoarthritis and Complete Freund's adjuvant- (CFA-) (1 mg/ml, 50-50 μl s.c) induced rheumatoid arthritis murine models. The mechanonociceptive threshold of female NMRI mice (n=6- 8 mice/ group) was measured by aesthesiometry, and paw volume was monitored with plethysmometry, knee joint diameter with digital micrometer, and dynamic weight bearing on the hind limbs with a Bioseb instrument. Periarticular bone destruction was assessed by SkyScan 1176 in vivo micro-CT. Inflammatory cytokines were detected by ELISA in plasma samples. Treatments (30 min, every working day) with tap water, sand, and a combined therapy of tap water and sand served as controls. Hévíz medicinal water and combined treatment with water and mud significantly decreased the mechanical hyperalgesia and knee oedema in MIA-induced osteoarthritis model. However, balneotherapy did not influence mechanical hyperalgesia, weight bearing, or oedema formation induced by CFA. Neither medicinal water nor mud treatment ameliorated deep structural damage of the bones or the joints in the animal models. On the basis of the present findings, we conclude that balneotherapy is an effective complementary treatment to reduce the pain sensation and swelling in degenerative joint diseases such as osteoarthritis. Our experimental data are in agreement with the previous human studies that also confirmed antinociceptive and anti-inflammatory effects of thermal water and Hévíz mud treatments.
Collapse
Affiliation(s)
- V. Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - É. Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - T. Kiss
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - A. Perkecz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
| | - Á. Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - J. Horváth
- Saint Andrew Hospital for Rheumatic Diseases, H-8380, Héviz, Dr. Schulhof Vilmos Sétány 1, Hungary
| | - A. Kvarda
- Saint Andrew Hospital for Rheumatic Diseases, H-8380, Héviz, Dr. Schulhof Vilmos Sétány 1, Hungary
| | - E. Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
- PharmInVivo Ltd, H-7629, Pécs, Szondi György U. 10, Hungary
| |
Collapse
|