1
|
Yay F, Ayan D. Bioinformatic analysis of neuropeptide related genes in patients diagnosed with invasive breast carcinoma. Comput Biol Med 2024; 183:109304. [PMID: 39437604 DOI: 10.1016/j.compbiomed.2024.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Neuropeptide receptors are expressed in many malignancies. Effectors involved in the action mechanisms of HCRTR1, HCRTR2, NPY4R (PPYR1) may be related to breast cancer (BC). Genes encoding these receptors and PPY and PTPN11 genes were aimed to examine via bioinformatics tools in the BRCA cohort. To our knowledge, this is the first study in which these receptor genes and PP, which have not found much research in BC, are examined together with PTPN11 and analyzed comprehensively in large patient cohorts from public databases. METHODS cBioPortal was used for gene alteration analyses, GeneMania for association analyses with other genes, Kaplan-Meier Plotter for Overall Survival (OS) and Relapse Free Survival (RFS) analyses, UALCAN for methylation analyses, TIMER2.0 for expression analyses, The Human Protein Atlas database for expression validations, TIMER for immune infiltration analyses, WEKA 3.8.6 for diagnostic classification performances of the genes based on Random Forest Classifier and Enrichr-KG for Gene Ontology (GO) Biological Process (BP) and KEGG analysis. RESULTS 19 (1.9 %) nucleotide changes were found in 996 cases. Missense mutation is most common. Decreased expression levels of the HCRTR1 gene were associated with shorter OS and RFS, but decreased expression levels of the PTPN11 gene were associated with longer OS and RFS. Decreased expression levels NPY4R (PPYR1) gene were associated with shorter RFS. Increased expression levels of HCRTR2 and PPY genes were associated with longer RFS. HCRTR1 and NPY4R (PPYR1) genes were statistically hypermethylated; conversely HCRTR2 and PPY genes were hypomethylated. There was no significant change in PTPN11 gene promoter methylation level. HCRTR1, NPY4R (PPYR1) and PTPN11 gene expressions were downregulated; conversely, HCRTR2 and PPY gene expressions upregulated. Weak correlations were observed between NPY4R (PPYR1) gene expression and CD4+ T Cell, Neutrophil, Dendritic Cell and between PTPN11 gene expression and CD8+ T Cell, Macrophage, Neutrophil, Dendritic Cell infiltrations. Area under the receiver operating characteristics curve values of the 10-fold cross-validation and by splitting the dataset in a ratio of 80:20 models were 0.930 and 0.963 respectively. HCRTR2 and HCRTR1 belong to regulation of cytosolic calcium ion concentration, cellular calcium ion homeostasis GO BPs. CONCLUSION In BC patients, increases in HCRTR2 and PPY gene expressions could be considered as positive prognostic factors. Decreases in HCRTR1 and NPY4R (PPYR1) gene expressions could be considered as negative prognostic factors. Decreased expression of PTPN11 gene may have a positive prognostic factor. Changes in existing genes are likely to be both a biomarker and therapeutic target for BC. However, experimental and clinical studies are needed to elucidate the mechanisms underlying these neuropeptide receptors in terms of breast carcinogenesis.
Collapse
Affiliation(s)
- Fatih Yay
- Nigde Omer Halisdemir University Training and Research Hospital, Clinical Biochemistry Laboratory, Nigde, Turkey.
| | - Durmus Ayan
- Nigde Omer Halisdemir University Training and Research Hospital, Clinical Biochemistry Laboratory, Nigde, Turkey; Nigde Omer Halisdemir University, Faculty of Medicine, Medical Biochemistry, Nigde, Turkey.
| |
Collapse
|
2
|
Krzeminska P. Exploring Testicular Descent: Recent Findings and Future Prospects in Canine Cryptorchidism. Sex Dev 2024:1-13. [PMID: 39504939 DOI: 10.1159/000542245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Canine cryptorchidism, manifested by an abnormal testicular position, poses significant health risks and reproductive challenges in affected males. Despite a high prevalence, estimated at up to 10% in the canine population, a comprehensive understanding of its pathogenesis remains elusive. Studies in human cryptorchids and knockout mice have identified key factors involved in testicular descent, including INSL3, RXFP2, and AR. To date, only three DNA variants, found in the RXFP2, HMGA2, and KAT6A genes, have been associated with canine cryptorchidism. SUMMARY This review briefly summarizes current knowledge on testicular descent and the factors that regulate this process, based on cryptorchidism in humans and mice. It also highlights recent findings related to canine cryptorchidism, focusing on the INSL3, HMGA2, and KAT6A genes. The most significant results are discussed, with an emphasis on the role of the epididymis in testicular descent. This report presents insights that may facilitate further research aiming to broaden our understanding of canine cryptorchidism pathogenesis. KEY MESSAGES DNA polymorphism in the KAT6A gene, associated with changes in global H3K9 acetylation, as well as the DNA methylation pattern in the INSL3 gene, suggest that further research should strongly focus on epigenetic modifications. In addition, the development of the epididymo-testicular junction and the link between cryptorchidism prevalence and dog size should be further investigated.
Collapse
Affiliation(s)
- Paulina Krzeminska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
3
|
Liguori G, Tafuri S, Pelagalli A, Ali’ S, Russo M, Mirabella N, Squillacioti C. G Protein-Coupled Estrogen Receptor (GPER) and ERs Are Modulated in the Testis-Epididymal Complex in the Normal and Cryptorchid Dog. Vet Sci 2024; 11:21. [PMID: 38250927 PMCID: PMC10820011 DOI: 10.3390/vetsci11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
There is growing evidence by the literature that the unbalance between androgens and estrogens is a relevant condition associated with a common canine reproductive disorder known as cryptorchidism. The role of estrogens in regulating testicular cell function and reproductive events is supposedly due to the wide expression of two nuclear estrogen receptors (ERs), ER-alpha and ER-beta and a trans-membrane G protein-coupled estrogen receptor (GPER) in the testis. In this study, immunohistochemistry, Western blotting and qRT-PCR were used to assess the distribution and expression of GPER in the testis-epididymal complex in the normal and cryptorchid dog. ER-alpha and ER-beta were also evaluated to better characterize the relative abundances of all three receptors. In addition, in these tissues, the expression level of two proteins as SOD1 and Nrf2 normally associated with oxidative stress was investigated to evaluate a possible relationship with ERs. Our data revealed changes in the distribution and expression of the GPER between the normal and cryptorchid dog. In particular, dogs affected by cryptorchidism showed an upregulation of GPER at level of the examined reproductive tract. Also considering the obtained result of a modulation of SOD1 and Nrf2 expression, we could hypothesize the involvement of GPER in the cryptorchid condition. Further studies are, however, necessary to characterize the role of GPER and its specific signaling mechanisms.
Collapse
Affiliation(s)
- Giovanna Liguori
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
- Department of Prevention, ASL FG, Piazza Pavoncelli 11, 71121 Foggia, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Napoli Federico II, 80137 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| | - Sabrina Ali’
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| | - Marco Russo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| |
Collapse
|
4
|
Costagliola A, Lombardi R, Liguori G, Morrione A, Giordano A. Orexins and Prostate Cancer: State of the Art and Potential Experimental and Therapeutic Perspectives. Cancer Genomics Proteomics 2023; 20:637-645. [PMID: 38035703 PMCID: PMC10687730 DOI: 10.21873/cgp.20412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in humans. Peptides have recently been used as targeted therapeutics in cancers, due to their extensive multi-functional applications. Two hypothalamic peptides, orexins A (OXA) and B (OXB) and their specific receptors, orexin receptor 1 (OX1R) and 2 (OX2R), orchestrate several biological processes in the central nervous system and peripheral organs. However, in addition to their role in physiological responses, orexins are involved in numerous inflammatory and/or neoplastic pathologies. The presence and expression of orexins in different cancer models, including prostate cancer, and their role in inducing pro- or anti-apoptotic responses in tumor cell lines, suggest that the orexinergic system might have potential therapeutic action or function as a diagnostic marker in PCa. In addition to the traditional animal models for studying human PCa, the canine model might also serve as an additional tool, due to its clinical similarities with human prostate cancer.
Collapse
Affiliation(s)
- Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
| | - Renato Lombardi
- Local Health Authority, ASL, Foggia, Italy
- Unit of Pharmacy, Department of Pharmaceuticals, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy;
- Local Health Authority, ASL, Foggia, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, U.S.A
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, U.S.A
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Kouhetsani S, Khazali H, Rajabi-Maham H. Orexin antagonism and substance-P: Effects and interactions on polycystic ovary syndrome in the wistar rats. J Ovarian Res 2023; 16:89. [PMID: 37147728 PMCID: PMC10161431 DOI: 10.1186/s13048-023-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder without definitive treatments. Orexin and Substance-P (SP) neuropeptides can affect the ovarian steroidogenesis. Moreover, there are limited studies about the role of these neuropeptides in PCOS. We aimed here to clarify the effects of orexins and SP in PCOS as well as any possible interactions between them. METHODS For this purpose, the animals (n = five rats per group) received intraperitoneally a single dose of SB-334,867-A (orexin-1 receptor antagonist; OX1Ra), JNJ-10,397,049 (orexin-2 receptor antagonist; OX2Ra), and CP-96,345 (neurokinin-1 receptor antagonist; NK1Ra), alone or in combination with each other after two months of PCOS induction. The blocking of orexin and SP receptors was studied in terms of ovarian histology, hormonal changes, and gene expression of ovarian steroidogenic enzymes. RESULTS The antagonists' treatment did not significantly affect the formation of ovarian cysts. In the PCOS groups, the co-administration of OX1Ra and OX2Ra as well as their simultaneous injections with NK1Ra significantly reversed testosterone levels and Cyp19a1 gene expression when compared to the PCOS control group. There were no significant interactions between the PCOS groups that received NK1Ra together with one or both OX1R- and OX2R-antagonists. CONCLUSION The blocking of the orexin receptors modulates abnormal ovarian steroidogenesis in the PCOS model of rats. This suggests that the binding of orexin-A and -B to their receptors reduces Cyp19a1 gene expression while increasing testosterone levels.
Collapse
Affiliation(s)
- Somayeh Kouhetsani
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Squillacioti C, Pelagalli A, Assisi L, Costagliola A, Van Nassauw L, Mirabella N, Liguori G. Does Orexin B-Binding Receptor 2 for Orexins Regulate Testicular and Epididymal Functions in Normal and Cryptorchid Dogs? Front Vet Sci 2022; 9:880022. [PMID: 35903144 PMCID: PMC9323089 DOI: 10.3389/fvets.2022.880022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022] Open
Abstract
Orexins A (OXA) and B (OXB) and the receptors 1 (OX1R) and 2 (OX2R) for orexins are hypothalamic peptides found in several mammalian organs and participated to the control of a wide assortment of physiological and pathological functions. The distribution of OXA and OX1R has been extensively studied in the male gonad of mammals. Here, we examined the expression and localization of OXB and OX2R as well as their possible involvement in the regulation of testicular and epididymal functions, in healthy and cryptorchid dogs, employing some techniques such as immunohistochemistry, Western blotting, and real-time RT-PCR. In vitro tests were also carried out for evaluating the steroidogenic effect of OXB. OXB and OX2R were expressed in spermatocytes, spermatids, and Leydig cells in normal testis. Their localization was restricted to Sertoli and Leydig cells in cryptorchid conditions. OXB was found to be localized in all tracts of both normal and cryptorchid epididymis, whereas OX2R was found only in the caput. Because the small molecular weight of the peptides OXA and OXB, the expression of their precursor prepro-orexin (PPO), OX1R, and OX2R proteins and mRNAs were investigated by means of Western blot and real-time RT-PCR analyses, respectively, in all tested groups of. In particular, the mRNA level expression of all three genes was higher in cryptorchid dogs than in normal ones. In vitro tests demonstrated that OXB-by binding OX2R-is not involved in testicular steroidogenic processes. Therefore, the findings of this study might be the basis for further functional and molecular studies addressing the possible biochemical effects of OXB and OX2R in normal and pathological conditions of the male reproductive system.
Collapse
Affiliation(s)
- Caterina Squillacioti
- Laboratory of Anatomy, Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Napoli Federico II, Naples, Italy
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), Naples, Italy
| | - Loredana Assisi
- Department of Biology, University of Napoli Federico II, Naples, Italy
| | - Anna Costagliola
- Laboratory of Anatomy, Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
| | - Luc Van Nassauw
- Laboratory of Human Anatomy and Embryology, Department ASTARC, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicola Mirabella
- Laboratory of Anatomy, Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
| | - Giovanna Liguori
- Laboratory of Anatomy, Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
- Department of Prevention, ASL FG, Foggia, Italy
| |
Collapse
|
7
|
Squillacioti C, Mirabella N, Liguori G, Germano G, Pelagalli A. Aquaporins Are Differentially Regulated in Canine Cryptorchid Efferent Ductules and Epididymis. Animals (Basel) 2021; 11:1539. [PMID: 34070358 PMCID: PMC8227126 DOI: 10.3390/ani11061539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
The efferent ductules and the epididymis are parts of the male reproductive system where spermatozoa mature. Specialized epithelial cells in these ducts contribute to the transport of fluids produced by spermatozoa's metabolic activity. Aquaporins (AQPs) have been demonstrated to be expressed in the spermatozoan membrane and testis epithelial cells, where they contribute to regulating spermatozoan volume and transit through environments of differing osmolality. Due to the lack of detailed literature regarding AQP expression in the canine male genital tract, the aim of this study was to investigate both the distribution and expression of AQP7, AQP8, and AQP9 in the efferent ductules and epididymal regions (caput, corpus, and cauda) from normal and cryptorchid dogs by using immunohistochemistry, Western blotting, and real-time reverse transcription polymerase chain reaction (RT-PCR). Our results show different patterns for the distribution and expression of the examined AQPs, with particular evidence of their upregulation in the caput and downregulation in the cauda region of the canine cryptorchid epididymis. These findings are associated with a modulation of Hsp70 and caspase-3 expression, suggesting the participation of AQPs in the luminal microenvironment modifications that are peculiar characteristics of this pathophysiological condition.
Collapse
Affiliation(s)
- Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy; (C.S.); (N.M.); (G.G.)
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy; (C.S.); (N.M.); (G.G.)
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy; (C.S.); (N.M.); (G.G.)
| | - Giuseppe Germano
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy; (C.S.); (N.M.); (G.G.)
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Napoli Federico II, 80100 Naples, Italy;
- Institute of Biostructures and Bioimages, National Research Council, 80145 Naples, Italy
| |
Collapse
|