1
|
Elhossini RM, El-Bassyouni HT, Ashaat EA, Ashour AM, Hamed K, Soliman DR, Hegazy I, Abdel-Hadi S, Elbendary HM, Mehrez M, Hassib NF, Al Kersh MA, Othman AI, Abdel-Salam GM, Abdel-Hamid MS, Aglan MS. Monoallelic variants in ACVR1 in a cohort of Egyptian individuals with fibrodysplasia ossificans progressiva. Clin Dysmorphol 2025; 34:15-24. [DOI: 10.1097/mcd.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Objectives
Fibrodysplasia ossificans progressiva (FOP) is a rare ectopic ossification disorder of connective tissue deposited in the muscles, fascia, tendons, and ligaments. The disease is an autosomal dominant pattern caused by pathogenic variants of ACVR1. Herein, we describe the largest number of affected individuals from the Middle East North Africa region who presented with FOP.
Methods
DNA extraction and molecular studies using Sanger sequencing was done for the nine affected individuals developing bony swellings of variable severity at different ages.
Results
Sanger sequencing identified the common ACVR1 variant (c.617G>A, p.Arg206His) in 7/9, whereas c.983G>A (p.Gly328Glu) in 2/9 affected individuals. Interestingly, the affected individuals harboring the p.Gly328Glu displayed atypical presentations involving micropenis, partial agenesis of the corpus callosum and dysmorphic brainstem, and reduction defects of fingers/toes. Moreover, they had a severe phenotype compared to affected individuals carrying the p.Arg206His variant.
Conclusions
Our study highlights the progressive nature of the disease and the importance of early diagnosis to avoid lethal complications such as locked jaw and airway obstructions that affect swallowing and breathing. An early accurate diagnosis gives an opportunity for the affected individuals in the future to be candidates for the agonist Palovarotene drug that prevents the complications arising from ectopic ossification.
Collapse
Affiliation(s)
- Rasha M. Elhossini
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Hala T. El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Engy A. Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Adel M. Ashour
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Khaled Hamed
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Doaa R. Soliman
- Department of Pediatrics, Faculty of Medicine, Benha University, Benha
| | - Ibrahim Hegazy
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Sawsan Abdel-Hadi
- Department of Pediatric Neurology, Children’s Hospital, Cairo University
| | - Hasnaa M. Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Mennat Mehrez
- Department of Orodental Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Nehal F. Hassib
- Department of Orodental Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo
- Dental Consultant, Dental Clinics, School of Dentistry, New Giza University, Giza
| | | | | | - Ghada M.H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Mohamed S. Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona S. Aglan
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| |
Collapse
|
2
|
Zwama J, Rosenberg NM, Verheij VA, Raijmakers PGHM, Yaqub M, Botman E, de Ruiter RD, Garrelfs MR, Bökenkamp A, Micha D, Schwarte LA, Teunissen BP, Lammertsma AA, Boellaard R, Eekhoff EMW. [ 18F]NaF PET/CT as a Marker for Fibrodysplasia Ossificans Progressiva: From Molecular Mechanisms to Clinical Applications in Bone Disorders. Biomolecules 2024; 14:1276. [PMID: 39456213 PMCID: PMC11505869 DOI: 10.3390/biom14101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic bone disorder characterized by episodic flare-ups in connective tissue, which are frequently followed by the formation of heterotopic ossification. The absence of available plasma-soluble biomarkers for flare-ups or heterotopic bone formation poses severe challenges to the monitoring of disease activity to measure or predict disease progression. Recently, 18-fluor-sodium fluoride positron emission tomography/computed tomography ([18F]NaF PET/CT) was introduced as a potential marker for ossifying FOP activity. This review discusses the pharmacokinetics of [18F]NaF in relation to the pathophysiology of FOP, and its use as a marker of local bone metabolism in a variety of bone-related disorders. In addition, the review specifically addresses the applicability of [18F]NaF PET/CT imaging in FOP as a monitoring modality.
Collapse
Affiliation(s)
- Jolien Zwama
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Neeltje M. Rosenberg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Vincent A. Verheij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Pieter G. H. M. Raijmakers
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Esmée Botman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Ruben D. de Ruiter
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Dijklander Hospital, Maelsonstraat 3, 1624 NP Hoorn, The Netherlands
| | - Mark R. Garrelfs
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pediatric Endocrinology, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arend Bökenkamp
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pediatric Nephrology, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
| | - Dimitra Micha
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Lothar A. Schwarte
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anesthesiology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Bernd P. Teunissen
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Adriaan A. Lammertsma
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Elisabeth M. W. Eekhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Farid A, Golden E, Robicheau S, Hu A, Cheung K, Yu PB, Rutkove SB, Upadhyay J. Diminished muscle integrity in patients with fibrodysplasia ossificans progressiva assessed with at-home electrical impedance myography. Sci Rep 2022; 12:20908. [PMID: 36463382 PMCID: PMC9719538 DOI: 10.1038/s41598-022-25610-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare disorder involving skeletal dysplasia and heterotopic ossification (HO) of muscle and connective tissue. We aimed to define a novel biomarker in FOP that enables reliable assessment of musculoskeletal tissue integrity. Considering logistical difficulties that FOP patients often face, our goal was to identify an at-home biomarker technique. Electrical impedance myography (EIM) is a non-invasive, portable method that can inform on muscle health. 15 FOP patients (age 10-52) and 13 healthy controls were assessed. Using EIM, multiple muscle groups were characterized per participant in a 45-min period. The Cumulative Analogue Joint Involvement Scale (CAJIS) was implemented to determine mobility burden severity. We additionally evaluated physical activity levels via a Patient-Reported Outcomes Measurement Information System (PROMIS)-based questionnaire. Relative to controls, FOP patients demonstrated significantly lower regional and whole-body phase values at 50 kHz and 100 kHz, indicating more diseased muscle tissue. Lower whole-body phase and reactance values, and higher resistance values, were associated with greater FOP burden (CAJIS score range: 4-30) and lower physical activity levels at 50 kHz and 100 kHz. This study points to the potential utility of EIM as a clinical biomarker tool capable of characterizing muscle integrity in FOP.
Collapse
Affiliation(s)
- Alexander Farid
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Emma Golden
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | - Alice Hu
- grid.492584.6Myolex Inc, Boston, MA USA
| | - Kin Cheung
- BioSAS Consulting, Inc., Wellesley, MA USA
| | - Paul B. Yu
- grid.38142.3c000000041936754XDivision of Cardiology, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Seward B. Rutkove
- grid.239395.70000 0000 9011 8547Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Jaymin Upadhyay
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
4
|
18F-Sodium Fluoride PET as a Diagnostic Modality for Metabolic, Autoimmune, and Osteogenic Bone Disorders: Cellular Mechanisms and Clinical Applications. Int J Mol Sci 2021; 22:ijms22126504. [PMID: 34204387 PMCID: PMC8234710 DOI: 10.3390/ijms22126504] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 01/31/2023] Open
Abstract
In a healthy body, homeostatic actions of osteoclasts and osteoblasts maintain the integrity of the skeletal system. When cellular activities of osteoclasts and osteoblasts become abnormal, pathological bone conditions, such as osteoporosis, can occur. Traditional imaging modalities, such as radiographs, are insensitive to the early cellular changes that precede gross pathological findings, often leading to delayed disease diagnoses and suboptimal therapeutic strategies. 18F-sodium fluoride (18F-NaF)-positron emission tomography (PET) is an emerging imaging modality with the potential for early diagnosis and monitoring of bone diseases through the detection of subtle metabolic changes. Specifically, the dissociated 18F- is incorporated into hydroxyapatite, and its uptake reflects osteoblastic activity and bone perfusion, allowing for the quantification of bone turnover. While 18F-NaF-PET has traditionally been used to detect metastatic bone disease, recent literature corroborates the use of 18F-NaF-PET in benign osseous conditions as well. In this review, we discuss the cellular mechanisms of 18F-NaF-PET and examine recent findings on its clinical application in diverse metabolic, autoimmune, and osteogenic bone disorders.
Collapse
|
5
|
Tucker-Bartley A, Lemme J, Gomez-Morad A, Shah N, Veliu M, Birklein F, Storz C, Rutkove S, Kronn D, Boyce AM, Kraft E, Upadhyay J. Pain Phenotypes in Rare Musculoskeletal and Neuromuscular Diseases. Neurosci Biobehav Rev 2021; 124:267-290. [PMID: 33581222 PMCID: PMC9521731 DOI: 10.1016/j.neubiorev.2021.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
For patients diagnosed with a rare musculoskeletal or neuromuscular disease, pain may transition from acute to chronic; the latter yielding additional challenges for both patients and care providers. We assessed the present understanding of pain across a set of ten rare, noninfectious, noncancerous disorders; Osteogenesis Imperfecta, Ehlers-Danlos Syndrome, Achondroplasia, Fibrodysplasia Ossificans Progressiva, Fibrous Dysplasia/McCune-Albright Syndrome, Complex Regional Pain Syndrome, Duchenne Muscular Dystrophy, Infantile- and Late-Onset Pompe disease, Charcot-Marie-Tooth Disease, and Amyotrophic Lateral Sclerosis. Through the integration of natural history, cross-sectional, retrospective, clinical trials, & case studies we described pathologic and genetic factors, pain sources, phenotypes, and lastly, existing therapeutic approaches. We highlight that while rare diseases possess distinct core pathologic features, there are a number of shared pain phenotypes and mechanisms that may be prospectively examined and therapeutically targeted in a parallel manner. Finally, we describe clinical and research approaches that may facilitate more accurate diagnosis, monitoring, and treatment of pain as well as elucidation of the evolving nature of pain phenotypes in rare musculoskeletal or neuromuscular illnesses.
Collapse
Affiliation(s)
- Anthony Tucker-Bartley
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jordan Lemme
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea Gomez-Morad
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nehal Shah
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Miranda Veliu
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, 55131, Germany
| | - Claudia Storz
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - David Kronn
- Department of Pathology and Pediatrics, New York Medical College, Valhalla, NY, 10595, USA; Medical Genetics, Inherited Metabolic & Lysosomal Storage Disorders Center, Boston Children's Health Physicians, Westchester, NY, 10532, USA
| | - Alison M Boyce
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eduard Kraft
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany; Interdisciplinary Pain Unit, University Hospital LMU Munich, Munich, 80539, Germany
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
6
|
Murgic J, Grgurevic L, Grazio S, Vukojevic R, Hoxha N, Maric-Brozic J, Soldic Z, Zovak M, Fröbe A. In Regard to Lee et al. Int J Radiat Oncol Biol Phys 2020; 108:1392-1394. [PMID: 33220228 DOI: 10.1016/j.ijrobp.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/04/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Jure Murgic
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Lovorka Grgurevic
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, Zagreb, Croatia; Department of Anatomy, ˝Drago Perović˝ School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Simeon Grazio
- Department of Rheumatology, Physical and Rehabilitation Medicine, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Rudolf Vukojevic
- Department of Diagnostic and Interventional Radiology, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Nita Hoxha
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jasmina Maric-Brozic
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre milosrdnice, Zagreb, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zeljko Soldic
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Mario Zovak
- Department of Surgery, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre milosrdnice, Zagreb, Croatia; School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|