1
|
Méndez-Luna D, Morelos-Garnica LA, García-Sánchez JR, Joucla G, Bonneau L, Bakalara N, Correa-Basurto J. Preclinical approach of two novel tetrahydroquinoline derivatives targeting GPER and Bcl-2 for anti-glioblastoma therapy. Sci Rep 2025; 15:17710. [PMID: 40399430 PMCID: PMC12095820 DOI: 10.1038/s41598-025-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/12/2025] [Indexed: 05/23/2025] Open
Abstract
Glioblastoma multiforme (GBM), is a rapidly growing and aggressive brain tumor that can arise de novo in the brain or evolve from lower-grade astrocytoma. This malignancy represents a medical challenge due to the tumor´s localization in the brain, high rates of Temozolomide (TMZ) resistance, and extensive malignant cell parenchymal infiltration, among other factors. Consequently, new drug discovery efforts have focused on targeting pivotal pharmacological targets such as GPER and Bcl-2, presenting a promising strategy for developing new GBM treatments. Herein, we present the results of an improved structure guided design of anti-glioblastoma compounds, L-06 and L-37, both containing the tetrahydroquinoline scaffold and a sulfonamide moiety recognized by GPER and Bcl-2 binding sites, respectively. Both compounds were evaluated in a battery of in vitro assays to measure their anti-glioblastoma activity. L-06 and L-37 were subjected to chemical stability testing under forced degradation conditions indicated minimal degradation from 0.15 to 13.6%. Additionally, antiproliferative evaluation in 2D cell culture yielded IC50 values between 39 and 67 µM in GBM cell lines LN18 and U373, consistent with Gossypol, a well-known Bcl-2 inhibitor. G-15 and L-37 to a greater extent than L-06, inhibit neurospheres formation in glioblastoma stem cells (Gli4) cultured in a proliferation medium. Moreover, in 3D antiproliferative assays using glioblastoma stem cells on non-aligned nanofibers L-37 showed better inhibitory effect than L-06. Interestingly, L-06 than L-37 exhibited an antimigratory effect on glioblastoma stem cells loaded onto aligned nanofibers at concentrations where no antiproliferative activity were observed, unlike G-15, a poorly water soluble GPER antagonist. Collectively, these findings establish a preclinical foundation for L-37 and L-06 as potential anti-glioblastoma agents and support their further investigation as therapeutic candidates.
Collapse
Affiliation(s)
- David Méndez-Luna
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Mexico City, C.P. 11340, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Loreley-Araceli Morelos-Garnica
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Mexico City, C.P. 11340, México
| | - José-Rubén García-Sánchez
- Laboratorio de Oncología Molecular y Estrés Oxidativo de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México, 11340, Mexico
| | - Gilles Joucla
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, F-33600, France
| | - Laurent Bonneau
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, F-33600, France
| | - Norbert Bakalara
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, F-33600, France.
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Mexico City, C.P. 11340, México.
| |
Collapse
|
2
|
Bushi A, Ma Y, Adu-Amankwaah J, Wang R, Cui F, Xiao R, Zhao J, Yuan J, Tan R. G protein-coupled estrogen receptor biased signaling in health and disease. Pharmacol Ther 2025; 269:108822. [PMID: 39978643 DOI: 10.1016/j.pharmthera.2025.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
G protein-coupled estrogen receptor (GPER) is now recognized for its pivotal role in cellular signaling, influencing diverse physiological processes and disease states. Unlike classical estrogen receptors, GPER exhibits biased signaling, wherein ligand binding triggers selective pathways over others, significantly impacting cellular responses. This review explores the nuanced mechanisms of biased signaling mediated by GPER, underscoring its relevance in cardiovascular health, neurological function, immune modulation, and oncogenic processes. Despite its critical implications, biased signaling through GPER remains underexplored compared to traditional signaling paradigms. We explore recent progress in understanding GPER signaling specificity and its potential therapeutic implications across various diseases. Future research directions aim to uncover the molecular basis of biased signaling, develop selective ligands, and translate these insights into personalized therapeutic approaches. Exploiting the therapeutic potential of GPER biased signaling represents a promising frontier in precision medicine, offering innovative strategies to address unmet medical needs.
Collapse
Affiliation(s)
- Aisha Bushi
- School international education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yixuan Ma
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Rong Wang
- The second clinical college, China Medical University, Shenyang, Liaoning 110122, China
| | - Fen Cui
- Research Institution of Behavioral Medicine Education, Jining Medical University, Jining 272067, China
| | - Rui Xiao
- Second Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China; Department of Pathology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China.
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
3
|
Domínguez-López I, López-Yerena A, Vallverdú-Queralt A, Pallàs M, Lamuela-Raventós RM, Pérez M. From the gut to the brain: the long journey of phenolic compounds with neurocognitive effects. Nutr Rev 2025; 83:e533-e546. [PMID: 38687609 PMCID: PMC11723161 DOI: 10.1093/nutrit/nuae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
The human gut microbiota is a complex community of micro-organisms that play a crucial role in maintaining overall health. Recent research has shown that gut microbes also have a profound impact on brain function and cognition, leading to the concept of the gut-brain axis. One way in which the gut microbiota can influence the brain is through the bioconversion of polyphenols to other bioactive molecules. Phenolic compounds are a group of natural plant metabolites widely available in the human diet, which have anti-inflammatory and other positive effects on health. Recent studies have also suggested that some gut microbiota-derived phenolic metabolites may have neurocognitive effects, such as improving memory and cognitive function. The specific mechanisms involved are still being studied, but it is believed that phenolic metabolites may modulate neurotransmitter signaling, reduce inflammation, and enhance neural plasticity. Therefore, to exert a protective effect on neurocognition, dietary polyphenols or their metabolites must reach the brain, or act indirectly by producing an increase in bioactive molecules such as neurotransmitters. Once ingested, phenolic compounds are subjected to various processes (eg, metabolization by gut microbiota, absorption, distribution) before they cross the blood-brain barrier, perhaps the most challenging stage of their trajectory. Understanding the role of phenolic compounds in the gut-brain axis has important implications for the development of new therapeutic strategies for neurological and psychiatric disorders. By targeting the gut microbiota and its production of phenolic metabolites, it may be possible to improve brain function and prevent cognitive decline. In this article, the current state of knowledge on the endogenous generation of phenolic metabolites by the gut microbiota and how these compounds can reach the brain and exert neurocognitive effects was reviewed.
Collapse
Affiliation(s)
- Inés Domínguez-López
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Anallely López-Yerena
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Mercè Pallàs
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
5
|
Szulc A, Wiśniewska K, Żabińska M, Gaffke L, Szota M, Olendzka Z, Węgrzyn G, Pierzynowska K. Effectiveness of Flavonoid-Rich Diet in Alleviating Symptoms of Neurodegenerative Diseases. Foods 2024; 13:1931. [PMID: 38928874 PMCID: PMC11202533 DOI: 10.3390/foods13121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge. Currently, most neurodegenerative diseases are considered incurable. An important aspect in the fight against and prevention of neurodegenerative diseases may be broadly understood lifestyle choices, and more specifically, what we will focus on in this review, a diet. One proposal that may help in the fight against the spread of neurodegenerative diseases is a diet rich in flavonoids. Flavonoids are compounds widely found in products considered healthy, such as fruits, vegetables, and herbs. Many studies indicated not only the neuroprotective effects of these compounds but also their ability to reverse changes occurring during the progression of diseases such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis. Here, we present the main groups of flavonoids, discussing their characteristics and mechanisms of action. The most widely described mechanisms point to neuroprotective functions due to strong antioxidant and anti-inflammatory effects, accompanied with their ability to penetrate the blood-brain barrier, as well as the ability to inhibit the formation of protein aggregates. The latter feature, together with promoting removal of the aggregates is especially important in neurodegenerative diseases. We discuss a therapeutic potential of selected flavonoids in the fight against neurodegenerative diseases, based on in vitro studies, and their impact when included in the diet of animals (laboratory research) and humans (population studies). Thus, this review summarizes flavonoids' actions and impacts on neurodegenerative diseases. Therapeutic use of these compounds in the future is potentially possible but depends on overcoming key challenges such as low bioavailability, determining the therapeutic dose, and defining what a flavonoid-rich diet is and determining its potential negative effects. This review also suggests further research directions to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.S.); (K.W.); (M.Ż.); (L.G.); (M.S.); (Z.O.); (K.P.)
| | | |
Collapse
|
6
|
Wang X, Zhou J, Wang Y, Li X, Hu Q, Luo L, Liu X, Liu W, Ye J. Effect of astrocyte GPER on the optic nerve inflammatory response following optic nerve injury in mice. Heliyon 2024; 10:e29428. [PMID: 38638966 PMCID: PMC11024623 DOI: 10.1016/j.heliyon.2024.e29428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Activated astrocytes are a primary source of inflammatory factors following traumatic optic neuropathy (TON). Accumulation of inflammatory factors in this context leads to increased axonal damage and loss of retinal ganglion cells (RGCs). Therefore, in the present study, we explored the role of the astrocyte G protein-coupled estrogen receptor (GPER) in regulating inflammatory factors following optic nerve crush (ONC), and analyzed its potential regulatory mechanisms. Overall, our results showed that GPER was abundantly expressed in the optic nerve, and co-localized with glial fibrillary acidic proteins (GFAP). Exogenous administration of G-1 led to a significant reduction in astrocyte activation and expression of inflammation-related factors (including IL-1β, TNF-α, NFκB, and p-NFκB). Additionally, it dramatically increased the survival of RGCs. In contrast, astrocytes were activated to a greater extent by exogenous G15 administration; however, RGCs survival was significantly reduced. In vitro, GPER activation significantly reduced astrocyte activation and the release of inflammation-related factors. In conclusion, activation of astrocyte GPER significantly reduced ONC inflammation levels, and should be explored as a potential target pathway for protecting the optic nerve and RGCs after TON.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yuwen Wang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Shapingba District, Chongqing, 400032, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Wei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
7
|
Hall KA, Filardo EJ. The G Protein-Coupled Estrogen Receptor (GPER): A Critical Therapeutic Target for Cancer. Cells 2023; 12:2460. [PMID: 37887304 PMCID: PMC10605794 DOI: 10.3390/cells12202460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancers, with increasing concern regarding the overall rising incidence of disease and exposure to environmental estrogens. Estrogens, both endogenous and environmental, manifest their actions through intracellular and plasma membrane receptors, named ERα, ERβ, and GPER. Collectively, they act to promote a broad transcriptional response that is mediated through multiple regulatory enhancers, including estrogen response elements (EREs), serum response elements (SREs), and cyclic AMP response elements (CREs). Yet, the design and rational assignment of antiestrogen therapy for breast cancer has strictly relied upon an endogenous estrogen-ER binary rubric that does not account for environmental estrogens or GPER. New endocrine therapies have focused on the development of drugs that degrade ER via ER complex destabilization or direct enzymatic ubiquitination. However, these new approaches do not broadly treat all cancer-involved receptors, including GPER. The latter is concerning since GPER is directly associated with tumor size, distant metastases, cancer stem cell activity, and endocrine resistance, indicating the importance of targeting this receptor to achieve a more complete therapeutic response. This review focuses on the critical importance and value of GPER-targeted therapeutics as part of a more holistic approach to the treatment of estrogen-driven malignancies.
Collapse
|
8
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
9
|
Ariyani W, Amano I, Koibuchi N. Isoflavones Mediate Dendritogenesis Mainly through Estrogen Receptor α. Int J Mol Sci 2023; 24:ijms24109011. [PMID: 37240356 DOI: 10.3390/ijms24109011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERβ or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERβ or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
10
|
Fernandez-Garcia JM, Carrillo B, Tezanos P, Pinos H, Collado P. Genistein early in life Modifies the arcuate nucleus of the hypothalamus morphology differentially in male and female rats. Mol Cell Endocrinol 2023; 570:111933. [PMID: 37080379 DOI: 10.1016/j.mce.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
In the present work we analyzed the effects of postnatal exposure to two doses of genistein (10 μg/g or 50 μg/g) from postnatal (P) day 6 to P13, on the morphology of the arcuate nucleus (Arc). The analyses of Arc coronal brain sections at 90 days showed that the ArcMP had higher values in volume, Nissl-stained neurons and GPER-ir neurons in males than in females and the treatment with genistein abolished these sex differences in most of the parameters studied. Moreover, in males, but not in females, the GPER-ir neurons decreased in the ArcMP but increased in the ArcL with both doses of genistein. In the ArcLP, GPER-ir population increased with the lowest doses and decreased with the highest one in males. Our results confirm that the Arc subdivisions have differential vulnerability to the effects of genistein during development, depending on which neuromorphological parameters, dose and sex are analyzed.
Collapse
Affiliation(s)
- Jose Manuel Fernandez-Garcia
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Traslacional, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28002, Spain
| | - Helena Pinos
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain.
| | - Paloma Collado
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| |
Collapse
|
11
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
12
|
Fucic A, Mantovani A, Vena J, Bloom MS, Sincic N, Vazquez M, Aguado-Sierra J. Impact of endocrine disruptors from mother's diet on immuno-hormonal orchestration of brain development and introduction of the virtual human twin tool. Reprod Toxicol 2023; 117:108357. [PMID: 36863570 DOI: 10.1016/j.reprotox.2023.108357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Diet has long been known to modify physiology during development and adulthood. However, due to a growing number of manufactured contaminants and additives over the last few decades, diet has increasingly become a source of exposure to chemicals that has been associated with adverse health risks. Sources of food contaminants include the environment, crops treated with agrochemicals, inappropriate storage (e.g., mycotoxins) and migration of xenobiotics from food packaging and food production equipment. Hence, consumers are exposed to a mixture of xenobiotics, some of which are endocrine disruptors (EDs). The complex interactions between immune function and brain development and their orchestration by steroid hormones are insufficiently understood in human populations, and little is known about the impact on immune-brain interactions by transplacental fetal exposure to EDs via maternal diet. To help to identify the key data gaps, this paper aims to present (a) how transplacental EDs modify immune system and brain development, and (b) how these mechanisms may correlate with diseases such as autism and disturbances of lateral brain development. Attention is given to disturbances of the subplate, a transient structure of crucial significance in brain development. Additionally, we describe cutting edge approaches to investigate the developmental neurotoxicity of EDs, such as the application of artificial intelligence and comprehensive modelling. In the future, highly complex investigations will be performed using virtual brain models constructed using sophisticated multi-physics/multi-scale modelling strategies based on patient and synthetic data, which will enable a greater understanding of healthy or disturbed brain development.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska C 2, Zagreb, Croatia.
| | - A Mantovani
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - J Vena
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M S Bloom
- Global and Community Health, George Mason University, 4400 University Dr., Fairfax, VA, USA
| | - N Sincic
- Medical School, University of Zagreb, Salata 3, Croatia
| | - M Vazquez
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - J Aguado-Sierra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| |
Collapse
|
13
|
Phytoestrogens and Health Effects. Nutrients 2023; 15:nu15020317. [PMID: 36678189 PMCID: PMC9864699 DOI: 10.3390/nu15020317] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Phytoestrogens are literally estrogenic substances of plant origin. Although these substances are useful for plants in many aspects, their estrogenic properties are essentially relevant to their predators. As such, phytoestrogens can be considered to be substances potentially dedicated to plant-predator interaction. Therefore, it is not surprising to note that the word phytoestrogen comes from the early discovery of estrogenic effects in grazing animals and humans. Here, several compounds whose activities have been discovered at nutritional concentrations in animals and humans are examined. The substances analyzed belong to several chemical families, i.e., the flavanones, the coumestans, the resorcylic acid lactones, the isoflavones, and the enterolignans. Following their definition and the evocation of their role in plants, their metabolic transformations and bioavailabilities are discussed. A point is then made regarding their health effects, which can either be beneficial or adverse depending on the subject studied, the sex, the age, and the physiological status. Toxicological information is given based on official data. The effects are first presented in humans. Animal models are evoked when no data are available in humans. The effects are presented with a constant reference to doses and plausible exposure.
Collapse
|
14
|
Abo Qoura L, Morozova E, Kulikova V, Karshieva S, Sokolova D, Koval V, Revtovich S, Demidkina T, Pokrovsky VS. Methionine γ-Lyase-Daidzein in Combination with S-Propyl-L-cysteine Sulfoxide as a Targeted Prodrug Enzyme System for Malignant Solid Tumor Xenografts. Int J Mol Sci 2022; 23:ijms231912048. [PMID: 36233347 PMCID: PMC9569779 DOI: 10.3390/ijms231912048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to determine the anticancer effect of dipropyl thiosulfinate produced in situ by the pharmacological pair: (1) conjugated with daidzein C115H methionine γ-lyase (EC 4.4.1.11, C115H MGL-Dz) and (2) the substrate, S-propyl-L-cysteine sulfoxide (propiin) against various solid tumor types in vitro and in vivo. The MTT test was used to calculate IC50 values for HT29, COLO205 and HCT116 (colon cancer); Panc1 and MIA-PaCa2 (pancreatic cancer); and 22Rv1, DU-145 and PC3 (prostate cancer). The most promising effect for colon cancer cells in vitro was observed in HT29 (IC50 = 6.9 µM). The IC50 values for MIA-PaCa2 and Panc1 were 3.4 and 3.8 µM, respectively. Among prostate cancer cells, 22Rv1 was the most sensitive (IC50 = 5.4 µM). In vivo antitumor activity of the pharmacological pair was studied in HT29, SW620, Panc1, MIA-PaCa2 and 22Rv1 subcutaneous xenografts in BALB/c nude mice. The application of C115H MGL-Dz /propiin demonstrated a significant reduction in the tumor volume of Panc1 (TGI 67%; p = 0.004), MIA-PaCa2 (TGI 50%; p = 0.011), HT29 (TGI 51%; p = 0.04) and 22Rv1 (TGI 70%; p = 0.043) xenografts. The results suggest that the combination of C115H MGL-Dz/propiin is able to suppress tumor growth in vitro and in vivo and the use of this pharmacological pair can be considered as a new strategy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Department of Biochemistry, RUDN University, 117198 Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (E.M.); (V.S.P.); Tel.: +7-915-143-03-91 (V.S.P.)
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Saida Karshieva
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Darina Sokolova
- Department of Biochemistry, RUDN University, 117198 Moscow, Russia
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Vasiliy Koval
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim S. Pokrovsky
- Department of Biochemistry, RUDN University, 117198 Moscow, Russia
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence: (E.M.); (V.S.P.); Tel.: +7-915-143-03-91 (V.S.P.)
| |
Collapse
|
15
|
Wen C, Wang C, Hu C, Qi T, Jing R, Wang Y, Zhang M, Shao Y, Pei C. REPS2 downregulation facilitates FGF-induced adhesion and migration in human lens epithelial cells through FAK/Cdc42 signaling and contributes to posterior capsule opacification. Cell Signal 2022; 97:110378. [PMID: 35690292 DOI: 10.1016/j.cellsig.2022.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Posterior capsular opacification (PCO) can cause postoperative visual loss after cataract surgery. Residual human lens epithelial cell (HLEC) proliferation, migration, epithelial-mesenchymal transition (EMT) and synthesis of extracellular matrix (ECM) are the entitative reasons for PCO. Low expression of Ral-binding protein 1-associated Eps domain-containing 2 (REPS2) and high levels of basic fibroblast growth factor (b-FGF) were observed in the lens and postoperative aqueous humor of cataract patients. REPS2 was identified as a negative regulator in growth factor signaling; however, its function in HLECs is unknown. This was first investigated in the present study by evaluating REPS2 expression in anterior lens capsules from cataract patients, a mouse cataract model, and HLE-b3 cells. The biological function of REPS2 in HLE-B3 cells was assessed by REPS2 silencing and Cell Counting Kit 8, wound healing, Transwell migration, F-actin staining, G-protein pulldown and western blot assays. In the present study, REPS2 was significantly downregulated in human and mouse cataract capsules and H2O2-treated HLE-B3 cells. REPS2 knockdown increased fibronectin, type I collagen, and α-smooth muscle actin expression levels and stimulated HLECs proliferation and migration; these effects were enhanced by FGF treatment and accompanied with focal adhesion kinase (FAK) phosphorylation, cell division cycle 42 (Cdc42) activation, focal adhesion protein upregulation, and F-actin cytoskeleton reorganization. However, treatment with the FAK inhibitor PF573228 abolished these effects. Thus, REPS2 downregulation in cataract HLECs induces their proliferation and facilitates FGF-induced ECM synthesis, EMT, cell adhesion and migration by activating FAK/Cdc42 signaling, which may underlie PCO pathogenesis.
Collapse
Affiliation(s)
- Chan Wen
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Chen Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Conghui Hu
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Tiantian Qi
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Ruihua Jing
- Department of Ophthalmology, second affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Yunqing Wang
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Ming Zhang
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Cheng Pei
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
16
|
Gadolinium-based contrast agent accelerates the migration of astrocyte via integrin αvβ3 signaling pathway. Sci Rep 2022; 12:5850. [PMID: 35393504 PMCID: PMC8990080 DOI: 10.1038/s41598-022-09882-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022] Open
Abstract
Gadolinium (Gd)-based contrast agents (GBCAs) are chemicals injected intravenously during magnetic resonance imaging to enhance the diagnostic yield. Repeated use of GBCAs causes their deposition in the brain. Such deposition may affect various neuronal cells, including astrocytes. In this study, we examined the effect of GBCAs (Omniscan, Magnescope, Magnevist, and Gadovist) on astrocyte migration, which is critical for formation of neurons during development and maintaining brain homeostasis. All GBCAs increased cell migration and adhesion with increased actin remodelling. Knockdown of integrin αvβ3 by RNAi or exposure to integrin αvβ3 inhibitor reduced astrocyte migration. GBCAs increased phosphorylation of downstream factors of αvβ3, such as FAK, ERK1/2, and Akt. The phosphorylation of all these factors were reduced by RNAi or integrin αvβ3 inhibitor. GBCAs also increased the phosphorylation of their downstream factor, Rac1/cdc42, belonging to the RhoGTPases family. Coexposure to the selective RhoGTPases inhibitors, decreased the effects of GBCAs on cell migration. These findings indicate that GBCAs exert their action via integrin αvβ3 to activate the signaling pathway, resulting in increased astrocyte migration. Thus, the findings of the study suggest that it is important to avoid the repeated use of GBCAs to prevent adverse side effects in the brain, particularly during development.
Collapse
|
17
|
The role of soy and soy isoflavones on women's fertility and related outcomes: an update. J Nutr Sci 2022; 11:e17. [PMID: 35320928 PMCID: PMC8922143 DOI: 10.1017/jns.2022.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Soy is a key food in human nutrition. It is widely used in eastern traditional cuisine and it has recently diffused among self-conscious and vegetarian diets. The success of soy mainly depends on versatility and supposed healthy properties of soy foods and soy components. Meanwhile, the possible influence on endocrine system, in particular by isoflavones, raised concerns among some researchers. The present paper aims to conduct a review of available data on the effect of soy, soy foods and soy components on women's fertility and related outcomes. Eleven interventional studies, eleven observational studies and one meta-analysis have been selected from the results of queries. A weak, not clinically relevant effect has been highlighted on cycle length and hormonal status. However, a suggestive positive influence has been shown among women with fertility issues and during assisted reproductive technologies. Overall, soy and soy components consumption do not seem to perturb healthy women's fertility and can have a favourable effect among subjects seeking pregnancy. However, because of the paucity of studies exploring the impact of soy intake on women's fertility, as well as the limited population sample size, the frequently incomplete specimens’ collection to investigate all cycle phases and the insufficient characterisation of participants, the evidence is suggestive and it needs further in-depth research taking into account all these aspects.
Collapse
|
18
|
Quincozes-Santos A, Santos CL, de Souza Almeida RR, da Silva A, Thomaz NK, Costa NLF, Weber FB, Schmitz I, Medeiros LS, Medeiros L, Dotto BS, Dias FRP, Sovrani V, Bobermin LD. Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 2021; 58:6577-6592. [PMID: 34581988 PMCID: PMC8477366 DOI: 10.1007/s12035-021-02574-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Glial cells (astrocytes, oligodendrocytes and microglia) are critical for the central nervous system (CNS) in both physiological and pathological conditions. With this in mind, several studies have indicated that glial cells play key roles in the development and progression of CNS diseases. In this sense, gliotoxicity can be referred as the cellular, molecular, and neurochemical changes that can mediate toxic effects or ultimately lead to impairment of the ability of glial cells to protect neurons and/or other glial cells. On the other hand, glioprotection is associated with specific responses of glial cells, by which they can protect themselves as well as neurons, resulting in an overall improvement of the CNS functioning. In addition, gliotoxic events, including metabolic stresses, inflammation, excitotoxicity, and oxidative stress, as well as their related mechanisms, are strongly associated with the pathogenesis of neurological, psychiatric and infectious diseases. However, glioprotective molecules can prevent or improve these glial dysfunctions, representing glial cells-targeting therapies. Therefore, this review will provide a brief summary of types and functions of glial cells and point out cellular and molecular mechanisms associated with gliotoxicity and glioprotection, potential glioprotective molecules and their mechanisms, as well as gliotherapy. In summary, we expect to address the relevance of gliotoxicity and glioprotection in the CNS homeostasis and diseases.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lara Scopel Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lívia Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bethina Segabinazzi Dotto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Filipe Renato Pereira Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Bernatoniene J, Kazlauskaite JA, Kopustinskiene DM. Pleiotropic Effects of Isoflavones in Inflammation and Chronic Degenerative Diseases. Int J Mol Sci 2021; 22:ijms22115656. [PMID: 34073381 PMCID: PMC8197878 DOI: 10.3390/ijms22115656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavones are phytoestrogens of plant origin, mostly found in the members of the Fabaceae family, that exert beneficial effects in various degenerative disorders. Having high similarity to 17-β-estradiol, isoflavones can bind estrogen receptors, scavenge reactive oxygen species, activate various cellular signal transduction pathways and modulate growth and transcription factors, activities of enzymes, cytokines, and genes regulating cell proliferation and apoptosis. Due to their pleiotropic activities isoflavones might be considered as a natural alternative for the treatment of estrogen decrease-related conditions during menopause. This review will focus on the effects of isoflavones on inflammation and chronic degenerative diseases including cancer, metabolic, cardiovascular, neurodegenerative diseases, rheumatoid arthritis and adverse postmenopausal symptoms.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
- Correspondence:
| | - Jurga Andreja Kazlauskaite
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| |
Collapse
|