1
|
Wu F, Cui C, Wu J, Wang Y. Can Lipoprotein(a) Predict the Risk of Diabetic Nephropathy in Type 2 Diabetes Mellitus?: A Systematic Review and Meta-Analysis. Horm Metab Res 2025; 57:242-251. [PMID: 40209745 DOI: 10.1055/a-2554-0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
We aimed to examine if serum lipoprotein(a) [Lp(a)] values could be used to predict the risk of diabetic nephropathy (DN) in type 2 diabetes mellitus (T2DM). English-language observational studies available as full-texts on PubMed, Embase, Scopus, and Web of Science databases up to 28th November 2024 were included in the review. Studies were to assess the association between Lp(a) and DN and report adjusted effect size. Random-effects meta-analysis was conducted. Five cross-sectional, two case-control, and eight studies prospective cohort were included. Six studies used Lp(a) as a continuous variable while eight used it as a categorical variable. Two studies used Lp(a) as both. Meta-analysis showed that an incremental increase in Lp(a) was associated with a small increase in the risk of DN (OR: 1.03 95% CI: 1.01, 1.04 I2=86%). Meta-analysis also showed that high levels of Lp(a) were associated with a significant increase in the risk of DN (OR: 1.64 95% CI: 1.24, 2.17 I2=67%). Subgroup analysis based on study design, location, sample size, T2DM duration, baseline HbA1c, and definition of DN yielded mixed results. Lp(a) could be a potential marker for DN in T2DM. Further investigations may provide better evidence.
Collapse
Affiliation(s)
- Feixiang Wu
- Department of Nephrology, Hangzhou Linping District Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Chenmin Cui
- Department of Nephrology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Junping Wu
- Department of Nephrology, Hangzhou Linping District Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Yunqing Wang
- Department of Nephrology, Hangzhou Linping District Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| |
Collapse
|
2
|
Tsushima Y, Hatipoglu B. Diabetes and Lipids: A Review and Update on Lipid Biomarkers and Cardiovascular Risk. Endocr Pract 2025:S1530-891X(25)00096-5. [PMID: 40158888 DOI: 10.1016/j.eprac.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE To review existing and new evidence regarding the relationship between diabetes and dyslipidemia and to provide an update of the lipid biomarkers used to assess cardiovascular risk and the current guidelines reflecting these changes. METHODS We conducted a literature review pertaining to diabetes and lipids using the MEDLINE/PubMed database. We reviewed articles in English and primarily published between 1994 and early 2025. Also included are guidelines published by professional organizations who are recognized nationally or internationally in the fields of diabetes, lipids, and cardiovascular disease. RESULTS Studies evaluating the relationship between diabetes and hypertriglyceridemia have provided practice-changing evidence. Lipid markers such as apolipoprotein B, non-high-density lipoprotein cholesterol, and lipoprotein (a), as well as the concept of lipid variability have emerged as treatment targets. CONCLUSION Over the past 30 years, non-low-density lipoprotein cholesterol lipid markers have been identified to further stratify individuals with diabetes who are at risk for future cardiovascular events. Treatment targets and pharmacological therapy have been studied and continue to be updated.
Collapse
Affiliation(s)
- Yumiko Tsushima
- University Hospitals Cleveland Medical Center, Department of Medicine, Diabetes & Obesity Center, Mayfield Heights, Ohio; Case Western Reserve University School of Medicine, Mayfield Heights, Ohio
| | - Betul Hatipoglu
- University Hospitals Cleveland Medical Center, Department of Medicine, Diabetes & Obesity Center, Cleveland, Ohio; Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
3
|
Pan J, Li C, Zhang J, Sun Z, Yu X, Wan Q, Ruan Z, Wang W, Li Y. Association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and diabetic kidney disease in patients with diabetes in the United States: a cross-sectional study. Lipids Health Dis 2024; 23:317. [PMID: 39334123 PMCID: PMC11437633 DOI: 10.1186/s12944-024-02308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND This paper investigated the link between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and diabetic kidney disease (DKD) in adult diabetic patients and identified the optimal NHHR value for impacting DKD. METHODS This cross-sectional research made use of records from the National Health and Nutrition Examination Survey (NHANES) executed between 2005 and 2016. The link of NHHR to DKD risk was analyzed by logistic regression and restricted cubic spline (RCS) models. The stability and reliability of the results were assessed by subgroup analysis and sensitivity analysis. RESULTS In total, 4,177 participants were involved. As a continuous variable, NHHR was markedly connected to an increased risk of DKD (OR 1.07, 95% CI 1.02, 1.12, P < 0.01). When NHHR was grouped in quartiles, relative to the reference set, the highest NHHR group was also linked to a heightened risk of DKD (OR 1.23, 95% CI 1.01, 1.50, P < 0.05). The outcome of RCS show a "J" shaped correlation between NHHR and DKD risk (P for nonlinear = 0.0136). The risk of developing DKD was the lowest when NHHR equals 2.66. Subgroup analysis revealed that the link of NHHR to DKD persisted in participants aged below 40, females, non-smokers, and those without hyperuricemia. Sensitivity analysis demonstrated a certain robustness in this association. CONCLUSION A meaningful link is present between NHHR and DKD. An NHHR value of around 2.66 could represent the ideal cutoff for assessing DKD risk.
Collapse
Affiliation(s)
- Jingjing Pan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Changnian Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Jiayi Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Zhenhua Sun
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Xiaoying Yu
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Qianhui Wan
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Zhishen Ruan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Wenbo Wang
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1 Jingba Road, Jinan, 250000, Shandong Province, People's Republic of China.
| | - Yujie Li
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.
- Department of Geriatrics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1 Jingba Road, Jinan, 250000, Shandong Province, People's Republic of China.
| |
Collapse
|
4
|
Liu W, Zhang G, Nie Z, Guan X, Sun T, Jin X, Li B. Low Concentration of Lipoprotein(a) is an Independent Predictor of Incident Type 2 Diabetes. Horm Metab Res 2024; 56:504-508. [PMID: 38772392 DOI: 10.1055/a-2316-9124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The aim of the study was to assess the association between lipoprotein(a) [Lp(a)] concentration and incident type 2 diabetes. A meta-analysis of qualified studies on the relationship of low levels of Lp(a) concentration with incident type 2 diabetes was conducted. PubMed and Cochrane libraries were searched for randomized controlled trials containing data on events. Seven randomized trials with 227178 subjects were included in this analysis. We found an inverse association of the levels of Lp(a) concentration with risk of type 2 diabetes with approximately 37% lower relative risk in the group with the highest concentration compared with group with the lowest concentration. The current available evidence from prospective studies suggests that there is an inverse association between the levels of Lp(a) concentration and risk of type 2 diabetes, with a higher risk of type 2 diabetes at low levels of Lp(a) concentration. Therefore, we believe that the low levels of Lp(a) concentration is an independent predictor of incident type 2 diabetes.
Collapse
Affiliation(s)
- Wenhao Liu
- Cardiology, Zibo Central Hospital, Zibo, China
| | | | - Zifan Nie
- Cardiology, Zibo Central Hospital, Zibo, China
| | - Xiangfeng Guan
- Cardiology, Shandong Second Medical University, Weifang, China
| | - Tingting Sun
- Cardiology, Shandong Second Medical University, Weifang, China
| | - Xiaodong Jin
- Geriatric Medicine, Zibo Central Hospital, Zibo, China
| | - Bo Li
- Cardiology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
5
|
Liu Y, Wang R, Li S, Zhang C, Lip GYH, Thabane L, Li G. Relationship Between Lipoprotein(a), Renal Function Indicators, and Chronic Kidney Disease: Evidence From a Large Prospective Cohort Study. JMIR Public Health Surveill 2024; 10:e50415. [PMID: 38294877 PMCID: PMC10867749 DOI: 10.2196/50415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) poses a significant global public health challenge. While lipoprotein(a) (Lp[a]) has been established as a significant factor in cardiovascular disease, its connection to CKD risk remains a topic of debate. Existing evidence indicates diverse risks of kidney disease among individuals with various renal function indicators, even when within the normal range. OBJECTIVE This study aims to investigate the joint associations between different renal function indicators and Lp(a) regarding the risks of incident CKD in the general population. METHODS The analysis involved a cohort of 329,415 participants without prior CKD who were enrolled in the UK Biobank between 2006 and 2010. The participants, with an average age of 56 (SD 8.1) years, included 154,298/329,415 (46.84%) males. At baseline, Lp(a) levels were measured using an immunoturbidimetric assay and classified into 2 groups: low (<75 nmol/L) and high (≥75 nmol/L). To assess participants' baseline renal function, we used the baseline urine albumin-to-creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR). The relationship between Lp(a), renal function indicators, and the risk of CKD was evaluated using multivariable Cox regression models. These models were adjusted for various factors, including sociodemographic variables, lifestyle factors, comorbidities, and laboratory measures. RESULTS A total of 6003 incident CKD events were documented over a median follow-up period of 12.5 years. The association between elevated Lp(a) levels and CKD risk did not achieve statistical significance among all participants, with a hazard ratio (HR) of 1.05 and a 95% CI ranging from 0.98 to 1.13 (P=.16). However, a notable interaction was identified between Lp(a) and UACR in relation to CKD risk (P for interaction=.04), whereas no significant interaction was observed between Lp(a) and eGFR (P for interaction=.96). When compared with the reference group with low Lp(a) and low-normal UACR (<10 mg/g), the group with high Lp(a) and low-normal UACR exhibited a nonsignificant association with CKD risk (HR 0.98, 95% CI 0.90-1.08; P=.74). By contrast, both the low Lp(a) and high-normal UACR (≥10 mg/g) group (HR 1.16, 95% CI 1.08-1.24; P<.001) and the high Lp(a) and high-normal UACR group (HR 1.32, 95% CI 1.19-1.46; P<.001) demonstrated significant associations with increased CKD risks. In individuals with high-normal UACR, elevated Lp(a) was linked to a significant increase in CKD risk, with an HR of 1.14 and a 95% CI ranging from 1.03 to 1.26 (P=.01). Subgroup analyses and sensitivity analyses consistently produced results that were largely in line with the main findings. CONCLUSIONS The analysis revealed a significant interaction between Lp(a) and UACR in relation to CKD risk. This implies that Lp(a) may act as a risk factor for CKD even when considering UACR. Our findings have the potential to provide valuable insights into the assessment and prevention of CKD, emphasizing the combined impact of Lp(a) and UACR from a public health perspective within the general population. This could contribute to enhancing public awareness regarding the management of Lp(a) for the prevention of CKD.
Collapse
Affiliation(s)
- Yingxin Liu
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ruoting Wang
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Changfa Zhang
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- Father Sean O'Sullivan Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
6
|
Li M, Wang Y, Yao Q, Liang Q, Zhang Y, Wang X, Li Q, Qiang W, Yang J, Shi B, He M. Association between Lipoprotein(a) and diabetic nephropathy in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2024; 14:1337469. [PMID: 38288472 PMCID: PMC10822945 DOI: 10.3389/fendo.2023.1337469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Background Diabetic nephropathy (DN) is one of the most prevalent and severe microvascular complications of type 2 diabetes (T2DM). However, little is currently known about the pathogenesis and its associated risk factors in DN. The present study aims to investigate the potential risk factors of DN in patients with T2DM. Methods A total of 6,993 T2DM patients, including 5,089 participants with DN and 1,904 without DN, were included in this cross-sectional study. Comparisons between the two groups (DN vs. non-DN) were carried out using Student's t-test, Mann-Whitney U-test, or Pearson's Chi-squared test. Spearman's correlation analyses were performed to assess the correlations of serum lipids and indicators of renal impairment. Logistic regression models were applied to assess the relationship between blood lipid indices and the presence of DN. Results T2DM patients with DN were older, and had a longer duration of diagnosed diabetes compared to those without DN. Of note, the DN patients also more likely develop metabolic disorders. Among all serum lipids, Lipoprotein(a) [Lp(a)] was the most significantly correlated indicators of renal impairment. Moreover, univariate logistic regression showed that elevated Lp(a) level was associated with an increased risk of DN. After adjusted for confounding factors, including age, gender, duration of T2DM, BMI, SBP, DBP and lipid-lowering drugs usage, Lp(a) level was independently positively associated with the risk of DN [odds ratio (OR):1.115, 95% confidence interval (CI): 1.079-1.151, P=6.06×10-11]. Conclusions Overall, we demonstrated that serum Lp(a) level was significantly positively associated with an increased risk of DN, indicating that Lp(a) may have the potential as a promising target for the diagnosis and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Yanjun Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Qianqian Yao
- Department of Endocrinology, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Qian Liang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Yuanyuan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Xin Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Qian Li
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Wei Qiang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Jing Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Mingqian He
- Department of Endocrinology, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Tsamoulis D, Kosmas CE, Rallidis LS. Is inverse association between lipoprotein(a) and diabetes mellitus another paradox in cardiometabolic medicine? Expert Rev Endocrinol Metab 2024; 19:63-70. [PMID: 38078437 DOI: 10.1080/17446651.2023.2293108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION The impact of Type II Diabetes mellitus (T2DM) on cardiovascular disease (CVD) is well-established, while lipoprotein(a) [Lp(a)] has recently emerged as a recognized CVD risk factor. The rising prevalence of T2DM resulting from modern lifestyles and the development of specific Lp(a)-lowering agents brought the association between T2DM and Lp(a) in the forefront. AREAS COVERED Despite advancements in T2DM treatment, diabetic patients remain at very-high risk of CVD. Lp(a) may, to some extent, contribute to the persistent CVD risk seen in diabetic patients, and the coexistence of T2DM and elevated Lp(a) levels appears to synergistically amplify overall CVD risk. The relationship between T2DM and Lp(a) is paradoxical. On one hand, high Lp(a) plasma concentrations elevate the risk of diabetic microvascular and macrovascular complications. On the other hand, low Lp(a) plasma concentrations have been linked to an increased risk of developing T2DM. EXPERT OPINION Comprehending the association between T2DM and Lp(a) is critical due to the pivotal roles both entities play in overall CVD risk, as well as the unique aspects of their relationship. The mechanisms underlying the inverse association between T2DM and Lp(a) remain incompletely understood, necessitating further meticulous research.
Collapse
Affiliation(s)
- Donatos Tsamoulis
- Second Department of Cardiology, National & Kapodistrian University of Athens, Athens, Greece
| | - Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Loukianos S Rallidis
- Second Department of Cardiology, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Martínez-Hernández SL, Muñoz-Ortega MH, Ávila-Blanco ME, Medina-Pizaño MY, Ventura-Juárez J. Novel Approaches in Chronic Renal Failure without Renal Replacement Therapy: A Review. Biomedicines 2023; 11:2828. [PMID: 37893201 PMCID: PMC10604533 DOI: 10.3390/biomedicines11102828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by renal parenchymal damage leading to a reduction in the glomerular filtration rate. The inflammatory response plays a pivotal role in the tissue damage contributing to renal failure. Current therapeutic options encompass dietary control, mineral salt regulation, and management of blood pressure, blood glucose, and fatty acid levels. However, they do not effectively halt the progression of renal damage. This review critically examines novel therapeutic avenues aimed at ameliorating inflammation, mitigating extracellular matrix accumulation, and fostering renal tissue regeneration in the context of CKD. Understanding the mechanisms sustaining a proinflammatory and profibrotic state may offer the potential for targeted pharmacological interventions. This, in turn, could pave the way for combination therapies capable of reversing renal damage in CKD. The non-replacement phase of CKD currently faces a dearth of efficacious therapeutic options. Future directions encompass exploring vaptans as diuretics to inhibit water absorption, investigating antifibrotic agents, antioxidants, and exploring regenerative treatment modalities, such as stem cell therapy and novel probiotics. Moreover, this review identifies pharmaceutical agents capable of mitigating renal parenchymal damage attributed to CKD, targeting molecular-level signaling pathways (TGF-β, Smad, and Nrf2) that predominate in the inflammatory processes of renal fibrogenic cells.
Collapse
Affiliation(s)
- Sandra Luz Martínez-Hernández
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Martín Humberto Muñoz-Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Mariana Yazmin Medina-Pizaño
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| |
Collapse
|
9
|
Fogacci F, Di Micoli V, Avagimyan A, Giovannini M, Imbalzano E, Cicero AFG. Assessment of Apolipoprotein(a) Isoform Size Using Phenotypic and Genotypic Methods. Int J Mol Sci 2023; 24:13886. [PMID: 37762189 PMCID: PMC10531419 DOI: 10.3390/ijms241813886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Apolipoprotein(a) (apo(a)) is the protein component that defines lipoprotein(a) (Lp(a)) particles and is encoded by the LPA gene. The apo(a) is extremely heterogeneous in size due to the copy number variations in the kringle-IV type 2 (KIV2) domains. In this review, we aim to discuss the role of genetics in establishing Lp(a) as a risk factor for coronary heart disease (CHD) by examining a series of molecular biology techniques aimed at identifying the best strategy for a possible application in clinical research and practice, according to the current gold standard.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Valentina Di Micoli
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Ashot Avagimyan
- Pathological Anatomy Department, Yerevan State Medical University, Yerevan 0025, Armenia;
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
- Cardiovascular Medicine Unit, Heart, Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40100 Bologna, Italy
| |
Collapse
|
10
|
Li N, Zhou J, Chen R, Zhao X, Li J, Zhou P, Liu C, Chen Y, Wang Y, Song L, Yan S, Zhao H, Yan H. Prognostic impacts of diabetes status and lipoprotein(a) levels in patients with ST-segment elevation myocardial infarction: a prospective cohort study. Cardiovasc Diabetol 2023; 22:151. [PMID: 37365608 DOI: 10.1186/s12933-023-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTS This study aimed to investigate the impact of lipoprotein(a) [Lp(a)] levels on the prognosis of Chinese patients with ST-segment elevation myocardial infarction (STEMI), and to explore if the impact may differ in the diabetes mellitus (DM) and nonDM groups. METHODS Between March 2017 and January 2020, 1543 patients with STEMI who underwent emergency percutaneous coronary intervention (PCI) were prospectively recruited. The primary outcome was a composite of all-cause death, MI recurrence (reMI), and stroke, known as major adverse cardiovascular events (MACE). Analyses involving the Kaplan-Meier curve, Cox regression, and restricted cubic spline (RCS) were conducted. RESULTS During the 1446-day follow-up period, 275 patients (17.8%) experienced MACEs, including 141 with DM (20.8%) and 134 (15.5%) without DM. As for the DM group, patients with Lp(a) ≥ 50 mg/dL showed an apparently higher MACE risk compared to those with Lp(a) < 10 mg/dL (adjusted hazard ratio [HR]: 1.85, 95% confidence interval [CI]:1.10-3.11, P = 0.021). The RCS curve indicates that the HR for MACE appeared to increase linearly with Lp(a) levels exceeding 16.9 mg/dL. However, no similar associations were obtained in the nonDM group, with an adjusted HR value of 0.57 (Lp(a) ≥ 50 mg/dL vs. < 10 mg/dL: 95% CI 0.32-1.05, P = 0.071). Besides, compared to patients without DM and Lp(a) ≥ 30 mg/dL, the MACE risk of patients in the other three groups (nonDM with Lp(a) < 30 mg/dL, DM with Lp(a) < 30 mg/dL, and DM with Lp(a) ≥ 30 mg/dL) increased to 1.67-fold (95% CI 1.11-2.50, P = 0.013), 1.53-fold (95% CI 1.02-2.31, P = 0.041), and 2.08-fold (95% CI 1.33-3.26, P = 0.001), respectively. CONCLUSIONS In this contemporary STEMI population, high Lp(a) levels were linked to an increased MACE risk, and very high Lp(a) levels (≥ 50 mg/dL) significantly indicated poor outcomes in patients with DM, while not for those without DM. TRIAL REGISTRATION clinicaltrials.gov NCT: 03593928.
Collapse
Affiliation(s)
- Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shaodi Yan
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Hongbing Yan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China.
| |
Collapse
|
11
|
Ren W, Feng Y, Feng Y, Li J, Zhang C, Feng L, Cui L, Ran J. Relationship of liver fat content with systemic metabolism and chronic complications in patients with type 2 diabetes mellitus. Lipids Health Dis 2023; 22:11. [PMID: 36694216 PMCID: PMC9872378 DOI: 10.1186/s12944-023-01775-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE This study investigated the correlation of liver fat content (LFC) with metabolic characteristics and its association with chronic complications in type 2 diabetes mellitus (T2DM) patients. METHODS Eighty-one prospectively enrolled T2DM patients were divided into non-alcoholic fatty liver disease (NAFLD) group and the non-NAFLD group according to the presence of NAFL complications. LFC was determined by MRI IDEAL-IQ Sequence, and patients were divided into 4 groups according to LFC by quartile method. Basic information, metabolic indexes, and occurrence of chronic complications in different groups were analyzed and compared. RESULTS BMI, SBP, DBP, TG, ALT, AST, GGT, UA, HbA1c, FCP, 2 h CP, HOMA-IR, and HOMA-IS in the NAFLD group were significantly higher than the non-NAFLD group (P < 0.05). The incidences of chronic complications in the NAFLD group were higher than in the non-NAFLD group but not statistically significant (P > 0.05). BMI, SBP, DBP, TC, TG, ALT, AST, FCP, 2 h CP, HOMA-IR, and HOMA-IS showed significant differences between the patients with different LFC, and these indexes were significantly higher in patients with higher LFC than those with lower LFC (P < 0.05). Moreover, diabetes duration, TC, HOMA-IR, and LFC were the risk factors for ASCVD complications, while diabetes duration, TG, and LDL-C were risk factors for DN complications. Also, diabetes duration and SBP were risk factors for both DR and DPN complications in T2DM patients (P < 0.05). CONCLUSION LFC is positively correlated with the severity of the systemic metabolic disorder and chronic complications in T2DM patients.
Collapse
Affiliation(s)
- Weiwei Ren
- grid.412601.00000 0004 1760 3828Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Huizhou District, Guangzhou, 510630 China
| | - Yunlu Feng
- grid.263785.d0000 0004 0368 7397General Practice Department, South China Normal University Hospital. No.55, West of Zhongshan Avenue, Tianhe District, Guangzhou, 510632 China
| | - Youzhen Feng
- grid.412601.00000 0004 1760 3828Medical Imaging Center, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510000 China
| | - Jiaying Li
- grid.412601.00000 0004 1760 3828Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Huizhou District, Guangzhou, 510630 China
| | - Chuangbiao Zhang
- grid.412601.00000 0004 1760 3828Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Huizhou District, Guangzhou, 510630 China
| | - Lie Feng
- grid.412601.00000 0004 1760 3828Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Huizhou District, Guangzhou, 510630 China
| | - Lijuan Cui
- Department of Endocrinology and Metabolism, Guangzhou Baiyun District Maternity and Child Healthcare Hospital, No.1128 Airport Road, Guangzhou, 510000 China
| | - Jianmin Ran
- grid.258164.c0000 0004 1790 3548Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital Affiliated to Jinan University, No. 396, Tongfu Middle Road, Huizhou District, Guangzhou, 510220 China
| |
Collapse
|
12
|
Wang A, Zhang S, Li Y, Zhu F, Xie B. Study on the relationship between lipoprotein (a) and diabetic kidney disease. J Diabetes Complications 2023; 37:108378. [PMID: 36549039 DOI: 10.1016/j.jdiacomp.2022.108378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Little is currently known about the role of lipid metabolism in diabetic kidney disease (DKD), warranting further study. The present study sought to investigate the correlation between lipid metabolism and renal function as well as renal pathological grade/score in DKD patients. METHODS A total of 224 patients diagnosed with DKD by pathological examination were retrospectively analyzed, of which 74 patients were further evaluated by DKD pathological grade/score. ANOVA was used to investigate serum lipoprotein (a) [Lp (a)] levels in DKD patients with different chronic kidney disease (CKD) stages. Spearman correlation analysis was used to evaluate the relationship between Lp (a) and renal function-related indicators. The DKD pathological grade/score was also evaluated with this method. The receiver operating characteristic (ROC) curve was used to analyze the value of Lp (a) in assessing renal function and pathological changes. RESULTS There were significant differences in Lp (a) levels among different CKD stages (H = 17.063, p = 0.002) and glomerular grades (H = 12.965, p = 0.005). Lp (a) levels correlated with serum creatinine (p = 0.000), blood urea nitrogen (p = 0.000), estimated glomerular filtration rate (p = 0.000), 24-h proteinuria (24hUPro, p = 0.000), urine microalbumin (p = 0.000), urine albumin creatinine ratio (p = 0.000), glomerular basement membrane thickness (p = 0.003), and glomerular grade (p = 0.039). ROC curve demonstrated good performance of Lp (a) as an indicator to assess CKD stage 4-5 (AUC = 0.684, p = 0.000), 24hUPro > 3.5 g (AUC = 0.720, p = 0.000), and glomerular grade III-IV (AUC = 0.695, p = 0.012). CONCLUSIONS Elevated levels of Lp (a) are associated with decreased GFR, increased proteinuria, and renal pathological progression, suggesting they could be used to monitor changes in DKD patients.
Collapse
Affiliation(s)
- Anni Wang
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China.
| | - Shaojie Zhang
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China
| | - Yayu Li
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China
| | - Fenggui Zhu
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China
| | - Bo Xie
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China; Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Westlake Ave 38, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
13
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Atherogenic Lipoproteins for the Statin Residual Cardiovascular Disease Risk. Int J Mol Sci 2022; 23:ijms232113499. [PMID: 36362288 PMCID: PMC9657259 DOI: 10.3390/ijms232113499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Randomized controlled trials (RCTs) show that decreases in low-density lipoprotein cholesterol (LDL-C) by the use of statins cause a significant reduction in the development of cardiovascular disease (CVD). However, one of our previous studies showed that, among eight RCTs that investigated the effect of statins vs. a placebo on CVD development, 56–79% of patients had residual CVD risk after the trials. In three RCTs that investigated the effect of a high dose vs. a usual dose of statins on CVD development, 78–87% of patients in the high-dose statin arms still had residual CVD risk. The risk of CVD development remains even when statins are used to strongly reduce LDL-C, and this type of risk is now regarded as statin residual CVD risk. Our study shows that elevated triglyceride (TG) levels, reduced high-density lipoprotein cholesterol (HDL-C), and the existence of obesity/insulin resistance and diabetes may be important metabolic factors that determine statin residual CVD risk. Here, we discuss atherogenic lipoproteins that were not investigated in such RCTs, such as lipoprotein (a) (Lp(a)), remnant lipoproteins, malondialdehyde-modified LDL (MDA-LDL), and small-dense LDL (Sd-LDL). Lp(a) is under strong genetic control by apolipoprotein (a), which is an LPA gene locus. Variations in the LPA gene account for 91% of the variability in the plasma concentration of Lp(a). A meta-analysis showed that genetic variations at the LPA locus are associated with CVD events during statin therapy, independent of the extent of LDL lowering, providing support for exploring strategies targeting circulating concentrations of Lp(a) to reduce CVD events in patients receiving statins. Remnant lipoproteins and small-dense LDL are highly associated with high TG levels, low HDL-C, and obesity/insulin resistance. MDA-LDL is a representative form of oxidized LDL and plays important roles in the formation and development of the primary lesions of atherosclerosis. MDA-LDL levels were higher in CVD patients and diabetic patients than in the control subjects. Furthermore, we demonstrated the atherogenic properties of such lipoproteins and their association with CVD as well as therapeutic approaches.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Correspondence: ; Tel.: +81-473-72-3501; Fax: +81-473-72-1858
| | | | | | | |
Collapse
|
14
|
Šuran D, Blažun Vošner H, Završnik J, Kokol P, Sinkovič A, Kanič V, Kokol M, Naji F, Završnik T. Lipoprotein(a) in Cardiovascular Diseases: Insight From a Bibliometric Study. Front Public Health 2022; 10:923797. [PMID: 35865239 PMCID: PMC9294325 DOI: 10.3389/fpubh.2022.923797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Lipoprotein(a) [Lp(a)] is a complex polymorphic lipoprotein comprised of a low-density lipoprotein particle with one molecule of apolipoprotein B100 and an additional apolipoprotein(a) connected through a disulfide bond. The serum concentration is mostly genetically determined and only modestly influenced by diet and other lifestyle modifications. In recent years it has garnered increasing attention due to its causal role in pre-mature atherosclerotic cardiovascular disease and calcific aortic valve stenosis, while novel effective therapeutic options are emerging [apolipoprotein(a) antisense oligonucleotides and ribonucleic acid interference therapy]. Bibliometric descriptive analysis and mapping of the research literature were made using Scopus built-in services. We focused on the distribution of documents, literature production dynamics, most prolific source titles, institutions, and countries. Additionally, we identified historical and influential papers using Reference Publication Year Spectrography (RPYS) and the CRExplorer software. An analysis of author keywords showed that Lp(a) was most intensively studied regarding inflammation, atherosclerosis, cardiovascular risk assessment, treatment options, and hormonal changes in post-menopausal women. The results provide a comprehensive view of the current Lp(a)-related literature with a specific interest in its role in calcific aortic valve stenosis and potential emerging pharmacological interventions. It will help the reader understand broader aspects of Lp(a) research and its translation into clinical practice.
Collapse
Affiliation(s)
- David Šuran
- Department of Cardiology and Angiology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: David Šuran
| | - Helena Blažun Vošner
- Community Healthcare Centre Dr. Adolf Drolc Maribor, Maribor, Slovenia
- Faculty of Health and Social Sciences Slovenj Gradec, Slovenj Gradec, Slovenia
- Alma Mater Europaea, Maribor, Slovenia
| | - Jernej Završnik
- Community Healthcare Centre Dr. Adolf Drolc Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor, Slovenia
| | - Peter Kokol
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Andreja Sinkovič
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Medical Intensive Care, University Medical Centre Maribor, Maribor, Slovenia
| | - Vojko Kanič
- Department of Cardiology and Angiology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
- Semantika Research, Semantika d.o.o., Maribor, Slovenia
| | - Franjo Naji
- Department of Cardiology and Angiology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Tadej Završnik
- Department of Cardiology and Angiology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
15
|
Lamina C, Ward NC. Lipoprotein (a) and diabetes mellitus. Atherosclerosis 2022; 349:63-71. [DOI: 10.1016/j.atherosclerosis.2022.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022]
|
16
|
Xie Y, Qi H, Li B, Wen F, Zhang F, Guo C, Zhang L. Serum lipoprotein (a) associates with the risk of renal function damage in the CHCN-BTH Study: Cross-sectional and Mendelian randomization analyses. Front Endocrinol (Lausanne) 2022; 13:1023919. [PMID: 36506069 PMCID: PMC9727385 DOI: 10.3389/fendo.2022.1023919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Evidence regarding the effects of lipoprotein (a) [lp(a)] and renal function remains unclear. The present study aimed to explore the causal association of serum lp(a) with renal function damage in Chinese general adults. METHODS A total of 25343 individuals with available lp(a) data were selected from the baseline survey of the Cohort Study on Chronic Disease of Communities Natural Population in Beijing, Tianjin, and Hebei (CHCN-BTH). Five renal function indexes [estimated glomerular filtration rate (eGFR), serum creatinine (Scr), blood urea nitrogen (BUN), uric acid (UA), high-sensitivity C-reactive protein(CRPHS)] were analyzed. The restricted cubic spline (RCS) method, logistic regression, and linear regression were used to test the dose-response association between lp(a) and renal function. Stratified analyses related to demographic characteristics and disease status were performed. Two-sample Mendelian randomization (MR) analysis was used to obtain the causal association of lp(a) and renal function indexes. Genotyping was accomplished by MassARRAY System. RESULTS Lp(a) levels were independently associated with four renal function indexes (eGFR, Scr, BUN, CRPHS). Individuals with a higher lp(a) level had a lower eGFR level, and the association with Scr estimated GFR was stronger in individuals with a lower lp(a) level (under 14 mg/dL). . The association was similar in individuals regardless of diabetes or hypertension. MR analysis confirmed the causal association of two renal function indexes (Scr and BUN). For MR analysis, each one unit higher lp(a) was associated with 7.4% higher Scr (P=0.031) in the inverse-variance weighted method. But a causal effect of genetically increased lp(a) level with increased eGFR level which contrasted with our observational results was observed. CONCLUSION The observational and causal effect of lp(a) on Scr and BUN were founded, suggesting the role of lp(a) on the risk of renal function damage in general Chinese adults.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To provide an overview of the associations between elevated blood pressure and lipoprotein (a) and possible causal links, as well as data on the prevalence of elevated lipoprotein (a) in a cohort of hypertensive patients. RECENT FINDINGS Elevated lipoprotein (a) is now considered to be an independent and causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve disease. Despite this, there are limited data demonstrating an association between elevated lipoprotein (a) and hypertension. Further, there is limited mechanistic data linking lipoprotein (a) and hypertension through either renal impairment or direct effects on the vasculature. Despite the links between lipoprotein (a) and atherosclerosis, there are limited data demonstrating an association with hypertension. Evidence from our clinic suggests that ~ 30% of the patients in this at-risk, hypertensive cohort had elevated lipoprotein (a) levels and that measurement of lipoprotein (a) maybe useful in risk stratification.
Collapse
|
18
|
Lipoprotein (a) and Cardiovascular Disease: A Missing Link for Premature Atherosclerotic Heart Disease and/or Residual Risk. J Cardiovasc Pharmacol 2021; 79:e18-e35. [PMID: 34694242 DOI: 10.1097/fjc.0000000000001160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Lipoprotein(a) or lipoprotein "little a" is an under-recognized causal risk factor for cardiovascular (CV) disease (CVD), including coronary atherosclerosis, aortic valvular stenosis, ischemic stroke, heart failure and peripheral arterial disease. Elevated plasma Lp(a) (≥50 mg/dL or ≥100 nmol/L) is commonly encountered in almost 1 in 5 individuals and confers a higher CV risk compared to those with normal Lp(a) levels, although such normal levels have not been generally agreed upon. Elevated Lp(a) is considered a cause of premature and accelerated atherosclerotic CVD. Thus, in patients with a positive family or personal history of premature coronary artery disease (CAD), Lp(a) should be measured. However, elevated Lp(a) may confer increased risk for incident CAD even in the absence of a family history of CAD, and even in those who have guideline-lowered LDL-cholesterol (<70 mg/dl) and continue to have a persisting CV residual risk. Thus, measurement of Lp(a) will have a significant clinical impact on the assessment of atherosclerotic CVD risk, and will assume a more important role in managing patients with CVD with the advent and clinical application of specific Lp(a)-lowering therapies. Conventional therapeutic approaches like lifestyle modification and statin therapy remain ineffective at lowering Lp(a). Newer treatment modalities, such as gene silencing via RNA interference with use of antisense oligonucleotide(s) or small interfering RNA molecules targeting Lp(a) seem very promising. These issues are herein reviewed, accumulated data are scrutinized, meta-analyses and current guidelines are tabulated and Lp(a)-related CVDs and newer therapeutic modalities are pictorially illustrated.
Collapse
|