1
|
Mei S, Chen Y, Long Y, Cen X, Zhao X, Zhang X, Ye J, Gao X, Zhu C. Association of gut microbiota with overweight/obesity combined with gestational diabetes mellitus. J Med Microbiol 2025; 74. [PMID: 40366751 DOI: 10.1099/jmm.0.002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Introduction. Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy and negatively affects the health of mothers and infants. The aim of this study was to explore the associations between gut microbiota and the risk of GDM amongst overweight/obese women, and the interaction between gut microbiota dysbiosis and overweight/obesity in pregnant women with GDM.Hypothesis/Gap statement. Previous studies revealed that there may be a link between gut microbiota and GDM and obesity, but these studies have not reported the associations between gut microbiota and the risk of GDM amongst overweight/obese women, whilst the interaction between gut microbiota dysbiosis and overweight/obesity in pregnant women with GDM remains unknown.Aim. Based on a prospective cohort study, we explored the composition of gut microbiota in overweight/obese pregnant women and its association with GDM.Methodology.Participants (n=1820) were enrolled from the Pregnancy Metabolic Disease and Adverse Pregnancy Outcome cohort in Guangzhou, China, between 2019 and 2021. The participants' information and faecal samples were collected, and the relative abundance of faecal microbiota was profiled using 16S rRNA V4 region sequencing. Pregnant women were divided into four groups: non- overweight (NOW)/obese without GDM (OB- NGDM), overweight (OW)/OB- NGDM, NOW/obese with GDM (OB- GDM) and OW/OB- GDM. Linear discriminant analysis effect size (LEfSe) analysis, Spearman's correlation analysis and t- test were performed to estimate the association amongst microbiota, pre- pregnancy BMI and oral glucose tolerance test (OGTT) glucose levels.Results. Blautia, Anaerostipes, Synergistes (P<0.001) and Christensenellaceae_R_7_group (P=0.007) were significantly different between NOW/OB-GDM and OW/OB-GDM groups after adjusting for age. Odoribacter, Anaerostipes, Monoglobus, Romboutsia, Oscillospiraceae__UCG-003, Blautia and Dialisterwere significantly correlated with both OGTT 1 h (P<0.001) and 2 h (P<0.05) blood glucose levels, whilst Lactobacillus(P<0.001) were significantly correlated with OGTT 2 h blood glucose levels. Synergistes(P<0.001) were significantly correlated with OGTT fasting glucose levels, and Megasphaera and Odoribacter(P<0.05) were significantly correlated with pre-pregnancy BMI.Conclusions. GDM and OB/OW women was experiencing microbiota dysbiosis, especially the microbial communities related to glucose metabolism.
Collapse
Affiliation(s)
- Shanshan Mei
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China
| | - Yisheng Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yan Long
- Department of Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China
| | - Xueqing Cen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xueqin Zhao
- Department of Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China
| | - Xiaoyan Zhang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China
| | - Jingyi Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiaoli Gao
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Chunyan Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China
| |
Collapse
|
2
|
Marzioni D, Piani F, Di Simone N, Giannubilo SR, Ciavattini A, Tossetta G. Importance of STAT3 signaling in preeclampsia (Review). Int J Mol Med 2025; 55:58. [PMID: 39918020 PMCID: PMC11878484 DOI: 10.3892/ijmm.2025.5499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
Placentation is a key process that is tightly regulated that ensures the normal placenta and fetal development. Preeclampsia (PE) is a hypertensive pregnancy‑associated disorder characterized by increased oxidative stress and inflammation. STAT3 signaling plays a key role in modulating important processes such as cell proliferation, differentiation, invasion and apoptosis. The present review aimed to analyse the role of STAT3 signaling in PE pregnancies, discuss the main natural and synthetic compounds involved in modulation of this signaling both in vivo and in vitro and summarize the main cellular modulators of this signaling to identify possible therapeutic targets and treatments to improve the outcome of PE pregnancies.
Collapse
Affiliation(s)
- Daniela Marzioni
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, I-60126 Ancona, Italy
| | - Federica Piani
- Hypertension and Cardiovascular Risk Research Center, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, I-40126 Bologna, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, I-20072 Milan, Italy
- Scientific Institutes for Hospitalization and Care (IRCCS), Humanitas Research Hospital, I-20089 Rozzano, Italy
| | | | - Andrea Ciavattini
- Department of Clinical Sciences, Polytechnic University of Marche, I-60123 Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, I-60126 Ancona, Italy
| |
Collapse
|
3
|
Zhang K, Shi X, Bian R, Shi W, Yang L, Ren C. Identification and validation of palmitoylation-related biomarkers in gestational diabetes mellitus. Sci Rep 2025; 15:8019. [PMID: 40055514 PMCID: PMC11889268 DOI: 10.1038/s41598-025-93046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/04/2025] [Indexed: 05/13/2025] Open
Abstract
Palmitoylation plays a crucial role in the pathophysiology of diabetes, and an increase in palmitoylation may inhibit the function of insulin receptors, thereby affecting the progression of gestational diabetes mellitus (GDM). However, its involvement in gestational diabetes mellitus (GDM) remains underexplored. This study analyzed GDM-related datasets and 30 palmitoylation-related genes (PRGs), identifying MNDA, FCGR3B, and AQP9 as significantly upregulated biomarkers in GDM samples. Consistent with the dataset analysis, reverse transcription-polymerase chain reaction (RT-qPCR) confirmed elevated AQP9 expression. Comprehensive analyses, including nomogram construction, enrichment analysis, immune infiltration assessment, molecular regulatory network generation, drug prediction, and molecular docking, were conducted. The biomarker-based nomogram demonstrated excellent predictive performance for GDM risk. MNDA, FCGR3B, and AQP9 were significantly enriched in pathways such as "Myc-targets-v1" and "TNFA signaling via NFkB." Additionally, eosinophil infiltration showed a strong positive correlation with these biomarkers. Regulatory networks involving SH3BP5-AS1-hsa-miR-182-5p-AQP9 and hsa-miR-182-5p-AQP9-ELF5 were identified, and stable binding energies were observed between the biomarkers and corresponding drugs. These findings provide promising avenues for early GDM screening and diagnosis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of General Medicine, Department of Intensive Care Unit, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, 450052, Henan, P.R. China
| | - Xiaoyang Shi
- Department of Endocrinology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, Zhengzhou, 450003, Henan, P.R. China
| | - Rongrong Bian
- Department of General Medicine, Department of Intensive Care Unit, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, 450052, Henan, P.R. China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, 450052, Henan, P.R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, 450052, Henan, P.R. China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, 450052, Henan, P.R. China.
| |
Collapse
|
4
|
Pooresmaeil F, Azadi S, Hasannejad-Asl B, Takamoli S, Bolhassani A. Pivotal Role of miRNA-lncRNA Interactions in Human Diseases. Mol Biotechnol 2024:10.1007/s12033-024-01343-y. [PMID: 39673006 DOI: 10.1007/s12033-024-01343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
New technologies have shown that most of the genome comprises transcripts that cannot code for proteins and are referred to as non-coding RNAs (ncRNAs). Some ncRNAs, like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are of substantial interest because of their critical function in controlling genes and numerous biological activities. The expression levels and function of miRNAs and lncRNAs are rigorously monitored throughout developmental processes and the maintenance of physiological homeostasis. Due to their critical roles, any dysregulation or changes in their expression can significantly influence the pathogenesis of various human diseases. The interactions between miRNAs and lncRNAs have been found to influence gene expression in various ways. These interactions significantly influence the understanding of disease etiology, cellular processes, and potential therapeutic targets. Different experimental and in silico methods can be used to investigate miRNA-lncRNA interactions. By aiding the elucidation of miRNA-lncRNA interactions and deepening the understanding of post-transcriptional gene regulation, researchers can open a new window for designing hypotheses, conducting experiments, and discovering methods for diagnosing and treating complex human diseases. This review briefly summarizes miRNA and lncRNA functions, discusses their interaction mechanisms, and examines the experimental and computational methods used to study these interactions. Additionally, we highlight significant studies on lncRNA and miRNA interactions in various diseases from 2000 to 2024, using the academic research databases such as PubMed, Google Scholar, ScienceDirect, and Scopus.
Collapse
Affiliation(s)
- Farkhondeh Pooresmaeil
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Sareh Azadi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Nelson BN, Friedman JE. Developmental Programming of the Fetal Immune System by Maternal Western-Style Diet: Mechanisms and Implications for Disease Pathways in the Offspring. Int J Mol Sci 2024; 25:5951. [PMID: 38892139 PMCID: PMC11172957 DOI: 10.3390/ijms25115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.
Collapse
Affiliation(s)
- Benjamin N. Nelson
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Razo-Azamar M, Nambo-Venegas R, Quevedo IR, Juárez-Luna G, Salomon C, Guevara-Cruz M, Palacios-González B. Early-Pregnancy Serum Maternal and Placenta-Derived Exosomes miRNAs Vary Based on Pancreatic β-Cell Function in GDM. J Clin Endocrinol Metab 2024; 109:1526-1539. [PMID: 38127956 DOI: 10.1210/clinem/dgad751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Pancreatic β-cell function impairment is a key mechanism for developing gestational diabetes mellitus (GDM). Maternal and placental exosomes regulate maternal and placental responses during hyperglycemia. Studies have associated exosomal micro-RNAs (miRNAs) with GDM development. To date, no studies have been reported that evaluate the profile of miRNAs present in maternal and placental exosomes in the early stages of gestation from pregnancies that develop GDM. OBJECTIVE We assessed whether early-pregnancy serum maternal and placenta-derived exosomes miRNA profiles vary according to pancreatic β-cell function in women who will develop GDM. METHODS A prospective nested case-control study was used to identify exosomal miRNAs that vary in early-pregnancy stages (<18 weeks of gestation) from women with normoglycemia and those who developed GDM based on their pancreatic β-cell function using the homeostasis model assessment of pancreatic β-cell function (HOMA-%β) index. Early-pregnancy serum maternal and placenta-derived exosomes were isolated to obtain miRNA profiles. Potential target and pathway analyses were performed to identify molecular and metabolic pathways associated with the exosomal miRNAs identified. RESULTS In early-pregnancy stages, serum maternal exosome size and concentration are modified in GDM group and fluctuate according to HOMA-%β index. Serum maternal exosomal hsa-miR-149-3p and hsa-miR-455-3p in GDM are related to insulin secretion and signaling, lipolysis, and adipocytokine signaling. Early-pregnancy serum placenta-derived exosomes hsa-miR-3665 and hsa-miR-6727-5p in GDM are related to regulating genes involved in response to immunological tolerance of pregnancy and pathways associated with placental dysfunction. CONCLUSION Early serum exosomal miRNAs differ depending on their origin (maternal or placental) and pancreatic β-cell function. This research provides insights into the interactions between maternal and placental exosomal miRNAs and may have implications for identifying potential biomarkers or therapeutic targets for GDM.
Collapse
Affiliation(s)
- Melissa Razo-Azamar
- Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), 14330 CDMX, México
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 CDMX, México
| | - Rafael Nambo-Venegas
- Laboratorio de Bioquímica de Enfermedades Crónicas Instituto Nacional de Medicina Genómica (INMEGEN), 14610 CDMX, México
| | - Iván Rafael Quevedo
- Departamento de Ingeniería Química Industrial y de Alimentos (DIQIA), Universidad Iberoamericana Ciudad de México (UIA), 01219 CDMX, México
| | - Gregorio Juárez-Luna
- Departamento de Ingeniería Química Industrial y de Alimentos (DIQIA), Universidad Iberoamericana Ciudad de México (UIA), 01219 CDMX, México
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, 8320000 Santiago, Chile
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 CDMX, México
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), 14330 CDMX, México
| |
Collapse
|
7
|
Zhan T, Tang S, Du J, Liu J, Yu B, Yang Y, Xie Y, Qiu Y, Li G, Gao Y. Implication of lncRNA MSTRG.81401 in Hippocampal Pyroptosis Induced by P2X7 Receptor in Type 2 Diabetic Rats with Neuropathic Pain Combined with Depression. Int J Mol Sci 2024; 25:1186. [PMID: 38256257 PMCID: PMC10816120 DOI: 10.3390/ijms25021186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Major depressive disorder (MDD) is a common complication of diabetes and is often observed alongside diabetic neuropathic pain (DNP) as a comorbidity in diabetic patients. Long non-coding RNA (lncRNA) plays an important role in various pathophysiological processes. The P2X7 receptor is responsible for triggering inflammatory responses, such as pyroptosis, linked to pain and depression. The aim of this study was to investigate the effect of lncRNA MSTRG.81401 on hippocampal pyroptosis induced by the P2X7 receptor in diabetic rats with DNP combined with MDD (DNP + MDD). Our results showed that the expression of lncRNA MSTRG.81401 was significantly elevated in the hippocampus of DNP + MDD rats compared with the control group. Following the administration of shRNA targeting lncRNA MSTRG.81401, a notable elevation in mechanical and thermal pain thresholds was observed in rats with comorbid DNP and MDD. Additionally, significant improvements in depression-like behaviors were evident in the open-field test (OFT), sucrose preference test (SPT), and forced swim test (FST). In the DNP + MDD rats, elevated levels in hippocampal P2X7 receptor mRNA and protein were observed, along with increased co-expression of P2X7 and the astrocytic marker glial fibrillary acidic protein (GFAP). Meanwhile, in DNP + MDD rats, the heightened mRNA expression of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), pyroptosis-related protein Gasdermin D (GSDMD), caspase-1, IL-1β, IL-18, and TNF-α was detected, in addition to increased serum levels of IL-1β, IL-18 and TNF-α. After shRNA treatment with lncRNA MSTRG.81401, the above abnormal changes in indicators for pyroptosis and inflammation were improved. Therefore, our study demonstrates that shRNA of lncRNA MSTRG.81401 can alleviate the pain and depression-like behaviors in diabetic rats associated with the comorbidity of DNP and MDD by inhibiting the hippocampal P2X7 receptor-mediated pyroptosis pathway and pro-inflammatory responses. This suggests that the P2X7R/NLRP3/caspase-1 implicated pyroptosis and inflammatory scenario may serve as a potential target for the management of comorbid DNP and MDD in diabetes.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Shanshan Tang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Junpei Du
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Jingshuang Liu
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang 330006, China;
| | - Bodong Yu
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Yuxin Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Yuting Xie
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Yanting Qiu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Guodong Li
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, China
| |
Collapse
|
8
|
Wang M, Zheng L, Ma S, Lin R, Li J, Yang S. Biogenesis and function of exosome lncRNAs and their role in female pathological pregnancy. Front Endocrinol (Lausanne) 2023; 14:1191721. [PMID: 37745705 PMCID: PMC10515720 DOI: 10.3389/fendo.2023.1191721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Preeclampsia, gestational diabetes mellitus, and recurrent spontaneous abortion are common maternal pregnancy complications that seriously endanger women's lives and health, and their occurrence is increasing year after year with a rejuvenation trend. In contrast to biomarkers found freely in tissues or body fluids, exosomes exist in a relatively independent environment and provide a higher level of stability. As backbone molecules, guidance molecules, and signaling molecules in the nucleus, lncRNAs can regulate gene expression. In the cytoplasm, lncRNAs can influence gene expression levels by modifying mRNA stability, acting as competitive endogenous RNAs to bind miRNAs, and so on. Exosomal lncRNAs can exist indefinitely and are important in intercellular communication and signal transduction. Changes in maternal serum exosome lncRNA expression can accurately and timely reflect the progression and regression of pregnancy-related diseases. The purpose of this paper is to provide a reference for clinical research on the pathogenesis, diagnosis, and treatment methods of pregnancy-related diseases by reviewing the role of exosome lncRNAs in female pathological pregnancy and related molecular mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Baghdadi H, Heidari R, Zavvar M, Ahmadi N, Shakouri Khomartash M, Vahidi M, Mohammadimehr M, Bashash D, Ghorbani M. Long Non-Coding RNA Signatures in Lymphopoiesis and Lymphoid Malignancies. Noncoding RNA 2023; 9:44. [PMID: 37624036 PMCID: PMC10458434 DOI: 10.3390/ncrna9040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Lymphoid cells play a critical role in the immune system, which includes three subgroups of T, B, and NK cells. Recognition of the complexity of the human genetics transcriptome in lymphopoiesis has revolutionized our understanding of the regulatory potential of RNA in normal lymphopoiesis and lymphoid malignancies. Long non-coding RNAs (lncRNAs) are a class of RNA molecules greater than 200 nucleotides in length. LncRNAs have recently attracted much attention due to their critical roles in various biological processes, including gene regulation, chromatin organization, and cell cycle control. LncRNAs can also be used for cell differentiation and cell fate, as their expression patterns are often specific to particular cell types or developmental stages. Additionally, lncRNAs have been implicated in lymphoid differentiation, such as regulating T-cell and B-cell development, and their expression has been linked to immune-associated diseases such as leukemia and lymphoma. In addition, lncRNAs have been investigated as potential biomarkers for diagnosis, prognosis, and therapeutic response to disease management. In this review, we provide an overview of the current knowledge about the regulatory role of lncRNAs in physiopathology processes during normal lymphopoiesis and lymphoid leukemia.
Collapse
Affiliation(s)
- Hamed Baghdadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
| | - Reza Heidari
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran 1411718541, Iran;
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 443614177, Iran;
| | - Nazanin Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | | | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mojgan Mohammadimehr
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Mahdi Ghorbani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| |
Collapse
|
10
|
Zhu C, Liu Y, Wu H. Overexpression of circACTR2 in Gestational Diabetes Mellitus Predicts Intrauterine Death, Fetal Malformation, and Intrauterine Infection. Diabetes Metab Syndr Obes 2021; 14:4655-4660. [PMID: 34876825 PMCID: PMC8643146 DOI: 10.2147/dmso.s316043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CircRNA actin-related protein 2 homolog (circACTR2) has been reported to participate in high glucose-induced disorders, while its role in gestational diabetes mellitus (GDM) is unknown. This study analyzed the expression pattern of circACTR2 in GDM and evaluated its predictive value for GDM and its adverse events. METHODS C\ircACTR2 expression in plasma of 200 pregnant females with a gestational age of about 1 month was analyzed once per month using RT-qPCR. The development of GDM was monitored until delivery. Adverse events, including premature delivery, miscarriage, intrauterine distress, intrauterine death, fetal malformation, intrauterine infection, hypertension, and macrosomia, were recorded. RESULTS During the follow-up, a total of 70 patients were diagnosed with GDM. The 70 GDM patients showed significantly higher plasma circACTR2 levels compared to the remaining 130 pregnant females. With the median plasma circACTR2 level in the first month as the cutoff value, the 200 patients were divided into the high and low circACTR2 level groups, and their GDM-free curves were plotted and compared. Patients in high circACTR2 level group showed a higher incidence of GDM. Moreover, among the 70 patients diagnosed with GDM, high circACTR2 levels were also closely correlated with higher rates of premature delivery, miscarriage, intrauterine death, fetal malformation, intrauterine infection, and hypertension, but not with macrosomia and intrauterine distress. CONCLUSION CircACTR2 is overexpressed in GDM. The increased plasma circACTR2 levels in pregnant women predict GDM, and higher plasma circACTR2 levels in GDM patients predict multiple adverse events.
Collapse
Affiliation(s)
- Can Zhu
- Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, Zhengzhou City, Henan Province, 450003, People’s Republic of China
| | - Yuning Liu
- Department of Neonatal Intensive Care Unit, Henan Provincial People’s Hospital, Zhengzhou City, Henan Province, 450003, People’s Republic of China
| | - Haiying Wu
- Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, Zhengzhou City, Henan Province, 450003, People’s Republic of China
- Correspondence: Haiying Wu Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, Henan Province, 450003, People’s Republic of China Email
| |
Collapse
|