1
|
Fidelito G, Todorovski I, Cluse L, Vervoort SJ, Taylor RA, Watt MJ. Lipid-metabolism-focused CRISPR screens identify enzymes of the mevalonate pathway as essential for prostate cancer growth. Cell Rep 2025; 44:115470. [PMID: 40146774 DOI: 10.1016/j.celrep.2025.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/22/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Dysregulated lipid metabolism plays an important role in prostate cancer, although the understanding of the essential regulatory processes in tumorigenesis is incomplete. We employ a CRISPR-Cas9 screen using a custom human lipid metabolism knockout library to identify essential genes for prostate cancer survival. Screening in three prostate cancer cell lines reveals 63 shared dependencies, with enrichment in terpenoid backbone synthesis and N-glycan biosynthesis. Independent knockout of key genes of the mevalonate pathway reduces cell proliferation. Further investigation focuses on NUS1, a subunit of cis-prenyltransferase required for dolichol synthesis. NUS1 knockout decreases tumor growth in vivo and viability in patient-derived xenograft (PDX)-derived organoids. Mechanistic studies reveal that loss of NUS1 promotes oxidative stress, lipid peroxidation and ferroptosis sensitivity, endoplasmic reticulum (ER) stress, and G1 cell-cycle arrest, and it dampens androgen receptor (AR) signaling, collectively leading to growth arrest. This study highlights the critical role of the mevalonate-dolichol-N-glycan biosynthesis pathway, particularly NUS1, in prostate cancer survival and growth.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Izabela Todorovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leonie Cluse
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephin J Vervoort
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Melbourne Urological Research Alliance (MURAL), Monash University, Clayton, VIC 3168, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia.
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Amer S, Unsihuay D, Yang M, Laskin J. Universal Photosensitizer for Isomer-Selective Lipid Imaging with High Molecular Coverage. Anal Chem 2025; 97:7071-7078. [PMID: 40130440 DOI: 10.1021/acs.analchem.4c05538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Spatial lipidomics is a powerful technique for understanding the complexity of the lipidome in biological systems through mass spectrometry imaging (MSI). Recent advancements have enabled isomer-selected MSI (iMSI) of lipids in biological samples using both online and off-line derivatization strategies. Despite these impressive developments, most iMSI techniques are limited to either positive or negative ion mode analysis, restricting the molecular coverage achievable in a single experiment. Additionally, derivatization efficiency often varies across lipid classes, presenting challenges for comprehensive lipid analysis. In this study, we introduce tetrakis(4-carboxyphenyl)porphyrin (TCPP) as a universal photosensitizer that facilitates online lipid derivatization in both positive and negative ionization modes via singlet oxygen (1O2) reaction. This method enables the identification and localization of both acyl chain compositions and lipid carbon-carbon (C═C) isomers in liquid extraction-based ambient ionization techniques. We have also employed sodium fluoride (NaF) as a solvent dopant to enhance the analysis of low-abundance and poorly ionizable biomolecules. By integrating these online derivatization and signal enhancement strategies with nanospray desorption electrospray ionization (nano-DESI), we achieved dual polarity iMSI within the same sample. We demonstrate imaging of low-abundance isomeric lipids, which were otherwise below the noise level. Notably, TCPP significantly enhances the efficiency of the online derivatization of unsaturated fatty acids, for which other photosensitizers are inefficient. This novel approach allows for the imaging of isomeric fatty acids and phospholipids from multiple classes in the same experiment, revealing their distinct spatial localization within biological tissues.
Collapse
Affiliation(s)
- Sara Amer
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daisy Unsihuay
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Manxi Yang
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Wang J, Alhaskawi A, Dong Y, Tian T, Abdalbary SA, Lu H. Advances in spatial multi-omics in tumors. TUMORI JOURNAL 2024; 110:327-339. [PMID: 39185632 DOI: 10.1177/03008916241271458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Single-cell techniques have convincingly demonstrated that tumor tissue usually contains multiple genetically defined cell subclones with different gene mutation sets as well as various transcriptional profiles, but the spatial heterogeneity of the microenvironment and the macrobiological characteristics of the tumor ecosystem have not been described. For the past few years, spatial multi-omics technologies have revealed the cellular interactions, microenvironment, and even systemic tumor-host interactions in the tumor ecosystem at the spatial level, which can not only improve classical therapies such as surgery, radiotherapy, and chemotherapy but also promote the development of emerging targeted therapies in immunotherapy. Here, we review some emerging spatial omics techniques in cancer research and therapeutic applications and propose prospects for their future development.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Tu Tian
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sahar Ahmed Abdalbary
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Cerrato A, Cavaliere C, Laganà A, Montone CM, Piovesana S, Sciarra A, Taglioni E, Capriotti AL. First Proof of Concept of a Click Inverse Electron Demand Diels-Alder Reaction for Assigning the Regiochemistry of Carbon-Carbon Double Bonds in Untargeted Lipidomics. Anal Chem 2024; 96:10817-10826. [PMID: 38874982 DOI: 10.1021/acs.analchem.4c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Lipidomics by high-resolution mass spectrometry (HRMS) has become a prominent tool in clinical chemistry due to the proven connections between lipid dysregulation and the insurgence of pathologies. However, it is difficult to achieve structural characterization beyond the fatty acid level by HRMS, especially when it comes to the regiochemistry of carbon-carbon double bonds, which play a major role in determining the properties of cell membranes. Several approaches have been proposed for elucidating the regiochemistry of double bonds, such as derivatization before MS analysis by photochemical reactions, which have shown great potential for their versatility but have the unavoidable drawback of splitting the MS signal. Among other possible approaches for derivatizing electron-rich double bonds, the emerging inverse-electron-demand Diels-Alder (IEDDA) reaction with tetrazines stands out for its unmatchable kinetics and has found several applications in basic biology and protein imaging. In this study, a catalyst-free click IEDDA reaction was employed for the first time to pinpoint carbon-carbon double bonds in free and conjugated fatty acids. Fatty acid and glycerophospholipid regioisomers were analyzed alone and in combination, demonstrating that the IEDDA reaction had click character and allowed the obtention of diagnostic product ions following MS/MS fragmentation as well as the possibility of performing relative quantitation of lipid regioisomers. The IEDDA protocol was later employed in an untargeted lipidomics study on plasma samples of patients suffering from prostate cancer and benign prostatic conditions, confirming the applicability of the proposed reaction to complex matrices of clinical interest.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Alessandro Sciarra
- Department of Maternal and Child and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
5
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Truong JXM, Rao SR, Ryan FJ, Lynn DJ, Snel MF, Butler LM, Trim PJ. Spatial MS multiomics on clinical prostate cancer tissues. Anal Bioanal Chem 2024; 416:1745-1757. [PMID: 38324070 DOI: 10.1007/s00216-024-05178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Mass spectrometry (MS) and MS imaging (MSI) are used extensively for both the spatial and bulk characterization of samples in lipidomics and proteomics workflows. These datasets are typically generated independently due to different requirements for sample preparation. However, modern omics technologies now provide higher sample throughput and deeper molecular coverage, which, in combination with more sophisticated bioinformatic and statistical pipelines, make generating multiomics data from a single sample a reality. In this workflow, we use spatial lipidomics data generated by matrix-assisted laser desorption/ionization MSI (MALDI-MSI) on prostate cancer (PCa) radical prostatectomy cores to guide the definition of tumor and benign tissue regions for laser capture microdissection (LCM) and bottom-up proteomics all on the same sample and using the same mass spectrometer. Accurate region of interest (ROI) mapping was facilitated by the SCiLS region mapper software and dissected regions were analyzed using a dia-PASEF workflow. A total of 5525 unique protein groups were identified from all dissected regions. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), a lipid remodelling enzyme, was significantly enriched in the dissected regions of cancerous epithelium (CE) compared to benign epithelium (BE). The increased abundance of this protein was reflected in the lipidomics data with an increased ion intensity ratio for pairs of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) in CE compared to BE.
Collapse
Affiliation(s)
- Jacob X M Truong
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Sushma R Rao
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Feargal J Ryan
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - David J Lynn
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Marten F Snel
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Lisa M Butler
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Paul J Trim
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
7
|
Bonney JR, Kang WY, Specker JT, Liang Z, Scoggins TR, Prentice BM. Relative Quantification of Lipid Isomers in Imaging Mass Spectrometry Using Gas-Phase Charge Inversion Ion/Ion Reactions and Infrared Multiphoton Dissociation. Anal Chem 2023; 95:17766-17775. [PMID: 37991720 PMCID: PMC11161029 DOI: 10.1021/acs.analchem.3c03804] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Accurate structural identification of lipids in imaging mass spectrometry is critical to properly contextualizing spatial distributions with tissue biochemistry. Gas-phase charge inversion ion/ion reactions alter the ion type prior to dissociation to allow for more structurally informative fragmentation and improve lipid identification at the isomeric level. In this work, infrared multiphoton dissociation (IRMPD) was interfaced with a commercial hybrid Qh-FT-ICR mass spectrometer to enable the rapid fragmentation of gas-phase charge inversion ion/ion reaction products at every pixel in imaging mass spectrometry experiments. An ion/ion reaction between phosphatidylcholine (PC) monocations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) and 1,4-phenylenediproprionic acid reagent dianions generated via electrospray ionization (ESI) followed by IRMPD of the resulting product ion complex produces selective fatty acyl chain cleavages indicative of fatty acyl carbon compositions in the lipid. Ion/ion reaction images using this workflow allow for mapping of the relative spatial distribution of multiple PC isomers under a single sum composition lipid identification. Lipid isomers display significantly different relative spatial distributions within rat brain tissue, highlighting the importance of resolving isomers in imaging mass spectrometry experiments.
Collapse
Affiliation(s)
- Julia R. Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Woo-Young Kang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Troy R. Scoggins
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
8
|
Randolph CE, Manchanda P, Arora H, Iyer S, Saklani P, Beveridge C, Chopra G. Mass Spectrometry-based Single-Cell Lipidomics: Advancements, Challenges, and the Path Forward. Trends Analyt Chem 2023; 169:117350. [PMID: 40255629 PMCID: PMC12007889 DOI: 10.1016/j.trac.2023.117350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
In the past decade, lipidomics, now recognized as standalone subdiscipline of metabolomics, has gained considerable attention. Due to its sensitivity and unparalleled versatility, mass spectrometry (MS) has emerged as the tool of choice for lipid identification and detection. Traditional MS-based lipidomics are performed on bulk cell samples. While informative, these bulk-scale cellular lipidome measurements mask cellular heterogeneity across seemingly homogeneous populations of cells. Unfortunately, single cell lipidomics methodology and analyses are considerably behind genomics, transcriptomics, and proteomics. Therefore, the cell-to-cell heterogeneity and related function remains largely unexplored for lipidomics. Herein, we review recent advances in MS-based single cell lipidomics. We also explore the root causes for the slow development of single-cell lipidomics techniques. We aim to provide insights on the pivotal knowledge gaps that have been neglected, prohibiting the propulsion of the single-cell lipidomics field forward, while also providing our perspective towards future methodologies that can pave a path forward.
Collapse
Affiliation(s)
| | - Palak Manchanda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Harshit Arora
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Pooja Saklani
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Connor Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, West Lafayette, IN 47907, USA
- Purdue University Integrative Data Science Initiative, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Yan T, Liang Z, Prentice BM. Imaging and Structural Characterization of Phosphatidylcholine Isomers from Rat Brain Tissue Using Sequential Collision-Induced Dissociation/Electron-Induced Dissociation. Anal Chem 2023; 95:15707-15715. [PMID: 37818979 PMCID: PMC10639000 DOI: 10.1021/acs.analchem.3c03077] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The chemical complexity of biological tissues creates challenges in the analysis of lipids via imaging mass spectrometry. The presence of isobaric and isomeric compounds introduces chemical noise that makes it difficult to unambiguously identify and accurately map the spatial distributions of these compounds. Electron-induced dissociation (EID) has previously been shown to profile phosphatidylcholine (PCs) sn-isomers directly from rat brain tissue in matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry. However, the acquisition of true pixel-by-pixel images, as opposed to regional profiling measurements, using EID is difficult due to low fragmentation efficiency and precursor ion signal dilution into multiple fragment ion channels, resulting in low sensitivity. In this work, we have developed a sequential collision-induced dissociation (CID)/EID method to visualize the distribution of sn-isomers in MALDI imaging mass spectrometry experiments. Briefly, CID is performed on sodium-adducted PCs, which results in facile loss of the phosphocholine headgroup. This ion is then subjected to an EID analysis. Since the lipid headgroup is removed prior to EID, a major fragmentation pathway common to EID ion activation is eliminated, resulting in a more sensitive analysis. This sequential CID/EID workflow generates sn-specific fragment ions allowing for the assignment of the sn-positions. Carbon-carbon double-bond (C═C) positions are also localized along the fatty acyl tails by the presence of a 2 Da shift pattern in the fragment ions arising from carbon-carbon bond cleavages. Moreover, the integration of the CID/EID method into MALDI imaging mass spectrometry enables the mapping of the absolute and relative distribution of sn-isomers at every pixel. The localized relative abundances of sn-isomers vary throughout brain substructures and likely reflect different biological functions and metabolism.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
10
|
Andrew R, Stimson RH. Mapping endocrine networks by stable isotope tracing. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100381. [PMID: 39185272 PMCID: PMC11344083 DOI: 10.1016/j.coemr.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hormones regulate metabolic homeostasis through interlinked dynamic networks of proteins and small molecular weight metabolites, and state-of-the-art chemical technologies have been developed to decipher these complex pathways. Stable-isotope tracers have largely replaced radiotracers to measure flux in humans, building on advances in nuclear magnetic resonance spectroscopy and mass spectrometry. These technologies are now being applied to localise molecules within tissues. Radiotracers are still highly valuable both preclinically and in 3D imaging by positron emission tomography. The coming of age of vibrational spectroscopy in conjunction with stable-isotope tracing offers detailed cellular insights to map complex biological processes. Together with computational modelling, these approaches are poised to coalesce into multi-modal platforms to provide hitherto inaccessible dynamic and spatial insights into endocrine signalling.
Collapse
Affiliation(s)
- Ruth Andrew
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Roland H Stimson
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|
11
|
Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells 2022; 11:cells11142146. [PMID: 35883589 PMCID: PMC9319324 DOI: 10.3390/cells11142146] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
In the last few years, the monounsaturated hexadecenoic fatty acids are being increasingly considered as biomarkers of health with key functions in physiology and pathophysiology. Palmitoleic acid (16:1n-7) and sapienic acid (16:1n-10) are synthesized from palmitic acid by the action of stearoyl-CoA desaturase-1 and fatty acid desaturase 2, respectively. A third positional isomer, hypogeic acid (16:1n-9) is produced from the partial β-oxidation of oleic acid. In this review, we discuss the current knowledge of the effects of palmitoleic acid and, where available, sapienic acid and hypogeic acid, on metabolic diseases such as diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and cancer. The results have shown diverse effects among studies in cell lines, animal models and humans. Palmitoleic acid was described as a lipokine able to regulate different metabolic processes such as an increase in insulin sensitivity in muscle, β cell proliferation, prevention of endoplasmic reticulum stress and lipogenic activity in white adipocytes. Numerous beneficial effects have been attributed to palmitoleic acid, both in mouse models and in cell lines. However, its role in humans is not fully understood, and is sometimes controversial. Regarding sapienic acid and hypogeic acid, studies on their biological effects are still scarce, but accumulating evidence suggests that they also play important roles in metabolic regulation. The multiplicity of effects reported for palmitoleic acid and the compartmentalized manner in which they often occur, may suggest the overlapping actions of multiple isomers being present at the same or neighboring locations.
Collapse
|
12
|
Koktavá M, Valášek J, Bezdeková D, Prysiazhnyi V, Adamová B, Beneš P, Navrátilová J, Hendrych M, Vlček P, Preisler J, Bednařík A. Metal Oxide Laser Ionization Mass Spectrometry Imaging of Fatty Acids and Their Double Bond Positional Isomers. Anal Chem 2022; 94:8928-8936. [PMID: 35713244 DOI: 10.1021/acs.analchem.2c00551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a novel combination of a metal oxide laser ionization mass spectrometry imaging (MOLI MSI) technique with off-line lipid derivatization by ozone for the detection of fatty acids (FA) and their carbon-carbon double bond (C═C) positional isomers in biological tissues. MOLI MSI experiments were realized with CeO2 and TiO2 nanopowders using a vacuum matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer in the negative mode. The catalytic properties of these metal oxides allow FA cleavage from phospholipids under UV laser irradiation. At the same time, fragile ozonides produced at the sites of unsaturation decomposed, yielding four diagnostic ions specific for the C═C positions. Advantageously, two MOLI MSI runs from a single tissue sprayed with the metal oxide suspension were performed. The first run prior to ozone derivatization revealed the distribution of FAs, while the second run after the reaction with ozone offered additional information about FA C═C isomers. The developed procedure was demonstrated on MSI of a normal mouse brain and human colorectal cancer tissues uncovering the differential distribution of FAs down to the isomer level. Compared to the histological analysis, MOLI MSI showed the distinct distribution of specific FAs in different functional parts of the brain and in healthy and cancer tissues pointing toward its biological relevance. The developed technique can be directly adopted by laboratories with MALDI TOF analyzers and help in the understanding of the local FA metabolism in tissues.
Collapse
Affiliation(s)
- Monika Koktavá
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Valášek
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Dominika Bezdeková
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vadym Prysiazhnyi
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Barbora Adamová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Michal Hendrych
- First Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Petr Vlček
- First Department of Surgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Antonín Bednařík
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
13
|
Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer. J Lipid Res 2022; 63:100223. [PMID: 35537528 PMCID: PMC9184569 DOI: 10.1016/j.jlr.2022.100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/18/2023] Open
Abstract
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.
Collapse
|
14
|
Bednařík A, Prysiazhnyi V, Bezdeková D, Soltwisch J, Dreisewerd K, Preisler J. Mass Spectrometry Imaging Techniques Enabling Visualization of Lipid Isomers in Biological Tissues. Anal Chem 2022; 94:4889-4900. [PMID: 35303408 DOI: 10.1021/acs.analchem.1c05108] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Feature focuses on a review of recent developments in mass spectrometry imaging (MSI) of lipid isomers in biological tissues. The tandem MS techniques utilizing online and offline chemical derivatization procedures, ion activation techniques such as ozone-induced dissociation (OzID), ultraviolet photodissociation (UVPD), or electron-induced dissociation (EID), and other techniques such as coupling of ion mobility with MSI are discussed. The importance of resolving lipid isomers in diseases is highlighted.
Collapse
Affiliation(s)
- Antonín Bednařík
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vadym Prysiazhnyi
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Dominika Bezdeková
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
15
|
Poad BLJ, Young RSE, Marshall DL, Trevitt AJ, Blanksby SJ. Accelerating Ozonolysis Reactions Using Supplemental RF-Activation of Ions in a Linear Ion Trap Mass Spectrometer. Anal Chem 2022; 94:3897-3903. [PMID: 35201768 DOI: 10.1021/acs.analchem.1c04915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas-phase ion-molecule reactions provide structural insights across a range of analytical applications. A hindrance to the wider use of ion-molecule reactions is that they are relatively slow compared to other ion activation modalities and can thereby impose a bottleneck on the time required to analyze each sample. Here we describe a method for accelerating the rate of ion-molecule reactions involving ozone, implemented by supplementary RF-activation of mass-selected ions within a linear ion trap. Reaction rate accelerations between 15-fold (for ozonolysis of alkenes in ionised lipids) and 90-fold (for ozonation of halide anions) are observed compared to thermal conditions. These enhanced reaction rates with ozone increase sample throughput, aligning the reaction time with the overall duty cycle of the mass spectrometer. We demonstrate that the acceleration is due to the supplementary RF-activation surmounting the activation barrier energy of the entrance channel of the ion-molecule reaction. This rate acceleration is subsequently shown to aid identification of new, low abundance lipid isomers and enables an equivalent increase in the number of lipid species that can be analyzed.
Collapse
Affiliation(s)
- Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Adam J Trevitt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2552, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
16
|
Zhu X, Xu T, Peng C, Wu S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem 2022; 9:782432. [PMID: 35186891 PMCID: PMC8850921 DOI: 10.3389/fchem.2021.782432] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Compared with conventional optical microscopy techniques, mass spectrometry imaging (MSI) or imaging mass spectrometry (IMS) is a powerful, label-free analytical technique, which can sensitively and simultaneously detect, quantify, and map hundreds of biomolecules, such as peptides, proteins, lipid, and other organic compounds in cells and tissues. So far, although several soft ionization techniques, such as desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS) have been used for imaging biomolecules, matrix-assisted laser desorption/ionization (MALDI) is still the most widespread MSI scanning method. Here, we aim to provide a comprehensive review of MALDI-MSI with an emphasis on its advances of the instrumentation, methods, application, and future directions in single cell and biological tissues.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Xu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Shihua Wu, ; Shihua Wu,
| |
Collapse
|