1
|
Esmaeili Motlagh P, Ghafouri-Fard S, Eslami S, Sharifi G, Taheri M. Expression assays of selected lncRNAs in non-functioning pituitary adenomas. Discov Oncol 2024; 15:486. [PMID: 39331269 PMCID: PMC11436507 DOI: 10.1007/s12672-024-01338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE Non-functioning pituitary adenomas (NFPAs) are a group of these neoplasms originated from the adenohypophyse and do not show evidence of hormonal oversecretion. However, different genes and lncRNAs have been found to be dysregulated in these samples. MATERIAL AND METHODS In this study, in order to identify novel biomarkers, a set of regulatory lncRNAs for the two important hub genes, i.e. STAT3 and EGFR were selected and subjected to experimental investigation. These lncRNAs were EGFR-AS1 for the EGFR gene, and LINC00240, FALEC and SNHG12 for the STAT3 gene. RESULTS All studied genes were down-regulated in NFPA samples compared with normal tissues adjacent to the tumors (NTATs), except for FALEC whose expression was not different between these two sets of samples. EGFR was the most significantly down-regulated gene in NFPAs (Expression ratio (95% CI) = 0.009 (0.002-0.04), P value < 0.0001). ROC curve analyses proposed that the expression levels of SNHG12, EGFR, EGFR-AS1 and LINC00240 can be used to distinguish NFPAs from NTATs with AUC values of 0.88, 0.83, 0.7 and 0.66, respectively. Spearman's correlation analyses showed significant correlations between FALEC and EGFR-AS1 in both types of tissues, and between FALEC and EGFR in NFPAs. Moreover, expression of LINC00240 was correlated with EGFR-AS1, FALEC and SNHG12 in NFPAs. CONCLUSION Taken together, EGFR and STAT3-related lncRNAs may be involved in the pathogenesis of NFPA.
Collapse
Affiliation(s)
- Parisa Esmaeili Motlagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
2
|
Whyte E, Nezu M, Chik C, Tateno T. Update on Current Evidence for the Diagnosis and Management of Nonfunctioning Pituitary Neuroendocrine Tumors. Endocrinol Metab (Seoul) 2023; 38:631-654. [PMID: 37964483 PMCID: PMC10764990 DOI: 10.3803/enm.2023.1838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the third most frequently diagnosed intracranial tumors, with nonfunctioning PitNETs (nfPitNETs) accounting for 30% of all pituitary tumors and representing the most common type of macroPitNETs. NfPitNETs are usually benign tumors with no evidence of hormone oversecretion except for hyperprolactinemia secondary to pituitary stalk compression. Due to this, they do not typically present with clinical syndromes like acromegaly, Cushing's disease or hyperthyroidism and instead are identified incidentally on imaging or from symptoms of mass effects (headache, vision changes, apoplexy). With the lack of effective medical interventions, first-line treatment is transsphenoidal surgical resection, however, nfPitNETs often have supra- or parasellar extension, and total resection of the tumor is often not possible, resulting in residual tumor regrowth or reoccurrence. While functional PitNETs can be easily followed for recurrence using hormonal biomarkers, there is no similar parameter to predict recurrence in nfPitNETs, hence delaying early recognition and timely management. Therefore, there is a need to identify prognostic biomarkers that can be used for patient surveillance and as therapeutic targets. This review focuses on summarizing the current evidence on nfPitNETs, with a special focus on potential new biomarkers and therapeutics.
Collapse
Affiliation(s)
- Elizabeth Whyte
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Masahiro Nezu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Papadimitriou E, Chatzellis E, Dimitriadi A, Kaltsas GA, Theocharis S, Alexandraki KI. Prognostic Biomarkers in Pituitary Tumours: A Systematic Review. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:42-53. [PMID: 38187082 PMCID: PMC10769480 DOI: 10.17925/ee.2023.19.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 01/09/2024]
Abstract
Pituitary tumours (PTs) are the second most common intracranial tumour. Although the majority show benign behaviour, they may exert aggressive behaviour and can be resistant to treatment. The aim of this review is to report the recently identified biomarkers that might have possible prognostic value. Studies evaluating potentially prognostic biomarkers or a therapeutic target in invasive/recurrent PTs compared with either non-invasive or non-recurrent PTs or normal pituitaries are included in this review. In the 28 included studies, more than 911 PTs were evaluated. A systematic search identified the expression of a number of biomarkers that may be positively correlated with disease recurrence or invasion in PT, grouped according to role: (1) insensitivity to anti-growth signals: minichromosome maintenance protein 7; (2) evasion of the immune system: cyclooxygenase 2, arginase 1, programmed cell death protein 1 (PD-1)/programmed death ligand 2, cluster of differentiation (CD) 80/CD86; (3) sustained angiogenesis: endothelial cell-specific molecule, fibroblast growth factor receptor, matrix metalloproteinase 9, pituitary tumour transforming gene; (4) self-sufficiency in growth signals: epidermal growth factor receptor; and (5) tissue invasion: matrix metalloproteinase 9, fascin protein. Biomarkers with a negative correlation with disease recurrence or invasion include: (1) insensitivity to anti-growth signals: transforming growth factor β1, Smad proteins; (2) sustained angiogenesis: tissue inhibitor of metalloproteinase 1; (3) tissue invasion: Wnt inhibitory factor 1; and (4) miscellaneous: co-expression of glial fibrillary acidic protein and cytokeratin, and oestrogen receptors α36 and α66. PD-1/programmed cell death ligand 1 showed no clear association with invasion or recurrence, while cyclin A, cytotoxic T lymphocyte-associated protein 4, S100 protein, ephrin receptor, galectin-3 , neural cell adhesion molecule, protein tyrosine phosphatase 4A3 and steroidogenic factor 1 had no association with invasion or recurrence of PT. With the aim to develop a more personalized approach to the treatment of PT, and because of the limited number of molecular targets currently studied in the context of recurrent PT and invasion, a better understanding of the most relevant of these biomarkers by well-d esigned interventional studies will lead to a better understanding of the molecular profile of PT. This should also meet the increased need of treatable molecular targets.
Collapse
Affiliation(s)
- Eirini Papadimitriou
- First Department of Propaedeutic Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Chatzellis
- Endocrinology Diabetes and Metabolism Department, 251 Hellenic Air Force and VA General Hospital, Athens, Greece
| | | | - Gregory A Kaltsas
- First Department of Propaedeutic Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
4
|
Fong KY, Lim MJR, Fu S, Low CE, Chan YH, Deepak DS, Xu X, Thong M, Jain S, Teo K, Gardner PA, Snyderman CH, Nga VDW, Yeo TT. Postsurgical outcomes of nonfunctioning pituitary adenomas: a patient-level meta-analysis. Pituitary 2023:10.1007/s11102-023-01335-2. [PMID: 37389776 DOI: 10.1007/s11102-023-01335-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Surgical resection is the main treatment for symptomatic nonfunctioning pituitary adenomas (NFPA). We aimed to analyze the impact of surgical approach, completeness of resection, and postoperative radiotherapy on long-term progression-free survival (PFS) of NFPA, using individual patient data (IPD) meta-analysis. METHODS An electronic literature searched was conducted on PubMed, EMBASE, and Web of Science from database inception to 6 November 2022. Studies describing the natural history of surgically resected NFPA, with provision of Kaplan-Meier curves, were included. These were digitized to obtain IPD, which was pooled in one-stage and two-stage meta-analysis to determine hazard ratios (HRs) and 95%CIs of gross total resection (GTR) versus subtotal resection (STR), and postoperative radiotherapy versus none. An indirect analysis of single-arm data between endoscopic endonasal (EES) and microscopic transsphenoidal (MTS) surgical technique was also performed. RESULTS Altogether, eleven studies (3941 patients) were retrieved. PFS was significantly lower in STR than GTR (shared-frailty HR 0.32, 95%CI 0.27-0.39, p < 0.001). Postoperative radiotherapy significantly improved PFS compared to no radiotherapy (shared-frailty HR 0.20, 95%CI 0.15-0.26, p < 0.001), including in the subgroup of patients with STR (shared-frailty HR 0.12, 95%CI 0.08-0.18, p < 0.001). Similar PFS was observed between EES and MTS (indirect HR 1.09, 95%CI 0.92-1.30, p = 0.301). CONCLUSIONS This systematic review and patient-level meta-analysis provides a robust prognostication of surgically treated NFPA. We reinforce current guidelines stating that GTR should be the standard of surgical resection. Postoperative radiotherapy is of considerable benefit, especially for patients with STR. Surgical approach does not significantly affect long-term prognosis. REGISTRATION PROSPERO CRD42022374034.
Collapse
Affiliation(s)
- Khi Yung Fong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mervyn Jun Rui Lim
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore, Singapore.
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Level 8, National University Health Systems Tower Block, 1E Kent Ridge Rd, Singapore, 119228, Singapore.
| | - Shuning Fu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chen Ee Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Xinni Xu
- Division of Otolaryngology - Head & Neck Surgery, National University Hospital, Singapore, Singapore
| | - Mark Thong
- Division of Otolaryngology - Head & Neck Surgery, National University Hospital, Singapore, Singapore
| | - Swati Jain
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore, Singapore
| | - Kejia Teo
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore, Singapore
| | - Paul A Gardner
- Center for Cranial Base Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carl H Snyderman
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vincent Diong Weng Nga
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore, Singapore
| |
Collapse
|
5
|
Saksis R, Rogoza O, Niedra H, Megnis K, Mandrika I, Balcere I, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Konrade I, Peculis R, Rovite V. Transcriptome of GH-producing pituitary neuroendocrine tumours and models are significantly affected by somatostatin analogues. Cancer Cell Int 2023; 23:25. [PMID: 36774501 PMCID: PMC9922463 DOI: 10.1186/s12935-023-02863-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Pituitary neuroendocrine tumours (PitNETs) are neoplasms of the pituitary that overproduce hormones or cause unspecific symptoms due to mass effect. Growth hormone overproducing GH-producing PitNETs cause acromegaly leading to connective tissue, metabolic or oncologic disorders. The medical treatment of acromegaly is somatostatin analogues (SSA) in specific cases combined with dopamine agonists (DA), but almost half of patients display partial or full SSA resistance and potential causes of this are unknown. In this study we investigated transcriptomic landscape of GH-producing PitNETs on several levels and functional models-tumour tissue of patients with and without SSA preoperative treatment, tumour derived pituispheres and GH3 cell line incubated with SSA to study effect of medication on gene expression. MGI sequencing platform was used to sequence total RNA from PitNET tissue, pituispheres, mesenchymal stromal stem-like cells (MSC), and GH3 cell cultures, and data were analysed with Salmon-DeSeq2 pipeline. We observed that the GH-producing PitNETs have distinct changes in growth hormone related pathways related to its functional status alongside inner cell signalling, ion transport, cell adhesion and extracellular matrix characteristic patterns. In pituispheres model, treatment regimens (octreotide and cabergoline) affect specific cell proliferation (MKI67) and core functionality pathways (RYR2, COL8A2, HLA-G, ARFGAP1, TGFBR2). In GH3 cells we observed that medication did not have transcriptomic effects similar to preoperative treatment in PitNET tissue or pituisphere model. This study highlights the importance of correct model system selection for cell transcriptomic profiling and data interpretation that could be achieved in future by incorporating NGS methods and detailed cell omics profiling in PitNET model research.
Collapse
Affiliation(s)
- Rihards Saksis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Olesja Rogoza
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Helvijs Niedra
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Kaspars Megnis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Ilona Mandrika
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Inga Balcere
- grid.488518.80000 0004 0375 2558Riga East Clinical University Hospital, Hipokrata Str 2, Riga, 1038 Latvia ,grid.17330.360000 0001 2173 9398Riga Stradins University, Dzirciema Str. 16, Riga, 1007 Latvia
| | - Liva Steina
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia ,grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Janis Stukens
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Austra Breiksa
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Jurijs Nazarovs
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Jelizaveta Sokolovska
- grid.9845.00000 0001 0775 3222Faculty of Medicine, University of Latvia, Raina Blvd 19, Riga, 1586 Latvia
| | - Ilze Konrade
- grid.488518.80000 0004 0375 2558Riga East Clinical University Hospital, Hipokrata Str 2, Riga, 1038 Latvia ,grid.17330.360000 0001 2173 9398Riga Stradins University, Dzirciema Str. 16, Riga, 1007 Latvia
| | - Raitis Peculis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067, Latvia.
| |
Collapse
|
6
|
Zhang F, Zhang Q, Zhu J, Yao B, Ma C, Qiao N, He S, Ye Z, Wang Y, Han R, Feng J, Wang Y, Qin Z, Ma Z, Li K, Zhang Y, Tian S, Chen Z, Tan S, Wu Y, Ran P, Wang Y, Ding C, Zhao Y. Integrated proteogenomic characterization across major histological types of pituitary neuroendocrine tumors. Cell Res 2022; 32:1047-1067. [PMID: 36307579 PMCID: PMC9715725 DOI: 10.1038/s41422-022-00736-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/30/2022] [Indexed: 02/07/2023] Open
Abstract
Pituitary neuroendocrine tumor (PitNET) is one of the most common intracranial tumors. Due to its extensive tumor heterogeneity and the lack of high-quality tissues for biomarker discovery, the causative molecular mechanisms are far from being fully defined. Therefore, more studies are needed to improve the current clinicopathological classification system, and advanced treatment strategies such as targeted therapy and immunotherapy are yet to be explored. Here, we performed the largest integrative genomics, transcriptomics, proteomics, and phosphoproteomics analysis reported to date for a cohort of 200 PitNET patients. Genomics data indicate that GNAS copy number gain can serve as a reliable diagnostic marker for hyperproliferation of the PIT1 lineage. Proteomics-based classification of PitNETs identified 7 clusters, among which, tumors overexpressing epithelial-mesenchymal transition (EMT) markers clustered into a more invasive subgroup. Further analysis identified potential therapeutic targets, including CDK6, TWIST1, EGFR, and VEGFR2, for different clusters. Immune subtyping to explore the potential for application of immunotherapy in PitNET identified an association between alterations in the JAK1-STAT1-PDL1 axis and immune exhaustion, and between changes in the JAK3-STAT6-FOS/JUN axis and immune infiltration. These identified molecular markers and alternations in various clusters/subtypes were further confirmed in an independent cohort of 750 PitNET patients. This proteogenomic analysis across traditional histological boundaries improves our current understanding of PitNET pathophysiology and suggests novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Fan Zhang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jiajun Zhu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Boyuan Yao
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chi Ma
- grid.462338.80000 0004 0605 6769State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan China
| | - Nidan Qiao
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiman He
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao Ye
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rui Han
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinwen Feng
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongfei Wang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zengyi Ma
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Li
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sha Tian
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyuan Chen
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Subei Tan
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Wu
- grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Ran
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Wang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China. .,Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China. .,Neurosurgical Institute of Fudan University, Shanghai, China. .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Das L, Gupta N, Dutta P, Walia R, Vaiphei K, Rai A, Radotra BD, Gupta K, Sreedharanunni S, Ahuja CK, Bhansali A, Tripathi M, Sood R, Dhandapani S. Early Initiation of Temozolomide Therapy May Improve Response in Aggressive Pituitary Adenomas. Front Endocrinol (Lausanne) 2021; 12:774686. [PMID: 34975752 PMCID: PMC8718901 DOI: 10.3389/fendo.2021.774686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Aggressive pituitary adenomas (APAs) are, by definition, resistant to optimal multimodality therapy. The challenge lies in their early recognition and timely management. Temozolomide is increasingly being used in patients with APAs, but evidence supporting a favorable response with early initiation is lacking. METHODS This was a single-center study of all patients with APAs who received at least 3 cycles of temozolomide (150-200 mg/m2). Their baseline clinico-biochemical and radiological profiles were recorded. Immunohistochemical evaluation for cell-cycle markers O6-methylguanine-DNA methyltransferase (MGMT), MutS homolog 2 (MSH2), MutS homolog 6 (MSH6), MutL homolog 1 (MLH1), and postmeiotic segregation increased 2 (PMS2) was performed, and h-scores (product of the number of positive cells and staining intensity) were calculated. Response was assessed in terms of radiological response using the RECIST criteria. Patients with controlled disease (≥30% reduction in tumor volume) were classified as responders. RESULTS The study comprised 35 patients (48.6% acromegaly, 37.1% prolactinomas, and 14.3% non-functioning pituitary adenomas). The median number of temozolomide (TMZ) cycles was 9 (IQR 6-14). Responders constituted 68.6% of the cohort and were more likely to have functional tumors, a lower percentage of MGMT-positive staining cells, and lower MGMT h-scores. There was a significantly longer lag period in the initiation of TMZ therapy in non-responders as compared with responders (median 36 vs. 15 months, p = 0.01). ROC-derived cutoffs of 31 months for the duration between diagnosis and TMZ initiation, low-to-intermediate MGMT positivity (40% tumor cells), and MGMT h-score of 80 all had a sensitivity exceeding 80% and a specificity exceeding 70% to predict response. CONCLUSION Early initiation of TMZ therapy, functional tumors, and low MGMT h-score predict a favorable response to TMZ in APAs.
Collapse
Affiliation(s)
- Liza Das
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nidhi Gupta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
- *Correspondence: Pinaki Dutta,
| | - Rama Walia
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kim Vaiphei
- Department of Histopathology, PGIMER, Chandigarh, India
| | - Ashutosh Rai
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Kirti Gupta
- Department of Histopathology, PGIMER, Chandigarh, India
| | | | | | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Ridhi Sood
- Department of Histopathology, PGIMER, Chandigarh, India
| | | |
Collapse
|