1
|
Berlińska A, Świątkowska-Stodulska R. Clinical use of thyroglobulin: not only thyroid cancer. Endocrine 2024; 84:786-799. [PMID: 38182855 PMCID: PMC11208243 DOI: 10.1007/s12020-023-03658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
Thyroglobulin (TG) is a dimeric glycoprotein produced exclusively by mature thyroid tissue and stored within the follicular lumen. It is essential for the organification of iodine and the production of thyroid hormones. The concentration of TG in the bloodstream varies between individuals and depends on factors such as thyroid mass, stimulation of the gland by thyrotropin or autoantibodies, and tissue destruction. TG is essential to monitor patients with differentiated thyroid cancer; however, its use is not limited only to this clinical entity. Measurement of circulating TG can provide better insight into numerous clinical scenarios, such as destructive thyroiditis, presence of ectopic thyroid tissue, thyroid trauma, factitious thyrotoxicosis, or iodine nutrition. Lately, TG has found its new clinical use in immune checkpoint-related thyroid dysfunction. TG measurement should be performed carefully in patients with antithyroglobulin antibodies due to possible laboratory interferences. In this review, we offer a summary of current knowledge about the clinical use of TG and the implications it brings to daily practice.
Collapse
Affiliation(s)
- Agata Berlińska
- Department of Endocrinology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Renata Świątkowska-Stodulska
- Department of Endocrinology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Abstract
The COVID-19 pandemic has affected over 772 million people globally. While lung damage is the major contributor to the morbidity and mortality of this disease, the involvement of multiple organs, including the endocrine glands, has been reported. This Review aims to provide an updated summary of evidence regarding COVID-19 and thyroid dysfunction, incorporating highlights of recent advances in the field, particularly in relation to long COVID and COVID-19 vaccination. Since subacute thyroiditis following COVID-19 was first reported in May 2020, thyroid dysfunction associated with COVID-19 has been increasingly recognized, secondary to direct and indirect effects on the hypothalamic-pituitary-thyroid axis. Here, we summarize the epidemiological evidence, pattern and clinical course of thyroid dysfunction following COVID-19 and examine radiological, molecular and histological evidence of thyroid involvement in SARS-CoV-2 infection. Beyond acute SARS-CoV-2 infection, it is also timely to examine the course and implication of thyroid dysfunction in the context of long COVID owing to the large population of survivors of COVID-19 worldwide. This Review also analyses the latest evidence on the relationship between the therapeutics and vaccination for COVID-19 and thyroid dysfunction. To conclude, evidence-based practice recommendations for thyroid function testing during and following COVID-19 and concerning COVID-19 vaccination are proposed.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Ho Lee
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Cho Woo
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ivan Fan Ngai Hung
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karen Siu Ling Lam
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Balasubramaniam S, Suresh Kumar A, Pandian P, Raviganesh PK, Perumpallipatty Kumarasamy S, Raju BP, Selvaraj B, Srinivasan AK, Balaji S, Ramasubramanian S. Thyroid Density in CT Imaging as a Potential Marker of Lung Involvement in COVID-19: A Retrospective Analysis. Cureus 2024; 16:e59699. [PMID: 38841002 PMCID: PMC11150337 DOI: 10.7759/cureus.59699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
Background The SARS-CoV-2 pandemic has underscored the multifaceted impact of the virus on human health, extending beyond the respiratory system to involve other organ systems, including the endocrine system. Emerging evidence suggests a notable interaction between COVID-19 and thyroid function, characterized by alterations in thyroid hormone levels and structural changes within the gland. This study aims to explore the association between thyroid density on CT imaging and lung involvement in patients with COVID-19, potentially offering new insights into the systemic effects of the virus. Methodology A retrospective cross-sectional analysis was conducted on 1,066 patients with COVID-19 who underwent chest CT scans without contrast at Government Medical College, Omandurar Government Estate, Chennai, which was designated as the COVID-19 care center from April to June 2021. Thyroid density and lung involvement were quantitatively assessed, and their correlation was analyzed using descriptive and inferential statistics, including the Kruskal-Wallis H test and Shapiro-Wilk test for normality. Results The study population predominantly exhibited normal thyroid density (749, 70.3%), followed by altered (212, 19.9%), nodular (104, 9.8%), and a single instance (0.1%) of absent thyroid density. Despite variability in lung involvement across different thyroid density categories, statistical analysis revealed no significant association between thyroid density and the extent of lung involvement in patients with COVID-19. Conclusions This study found no significant correlation between thyroid density and lung involvement in patients with COVID-19, suggesting that thyroid density on CT imaging may not serve as a reliable marker for lung involvement in this population. Further research is warranted to explore the complex interactions between COVID-19 and thyroid function, as well as the potential implications for patient management and prognosis.
Collapse
Affiliation(s)
| | - Aparna Suresh Kumar
- Internal Medicine, Government Medical College, Omandurar Government Estate, Chennai, IND
| | - Pravin Pandian
- Radiodiagnosis, Government Stanley Medical College and Hospital, Chennai, IND
| | | | - Sowmiya Perumpallipatty Kumarasamy
- Radiodiagnosis, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
- Radiodiagnosis, Government Stanley Medical College and Hospital, Chennai, IND
| | - Bharathi Priya Raju
- Radiodiagnosis, Government Stanley Medical College and Hospital, Chennai, IND
| | - Balaji Selvaraj
- Radiodiagnosis, Government Medical College, Omandurar Government Estate, Chennai, IND
| | | | - Sangeetha Balaji
- Radiodiagnosis, Government Medical College, Omandurar Government Estate, Chennai, IND
| | | |
Collapse
|
4
|
Kakoulidis P, Vlachos IS, Thanos D, Blatch GL, Emiris IZ, Anastasiadou E. Identifying and profiling structural similarities between Spike of SARS-CoV-2 and other viral or host proteins with Machaon. Commun Biol 2023; 6:752. [PMID: 37468602 PMCID: PMC10356814 DOI: 10.1038/s42003-023-05076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Using protein structure to predict function, interactions, and evolutionary history is still an open challenge, with existing approaches relying extensively on protein homology and families. Here, we present Machaon, a data-driven method combining orientation invariant metrics on phi-psi angles, inter-residue contacts and surface complexity. It can be readily applied on whole structures or segments-such as domains and binding sites. Machaon was applied on SARS-CoV-2 Spike monomers of native, Delta and Omicron variants and identified correlations with a wide range of viral proteins from close to distant taxonomy ranks, as well as host proteins, such as ACE2 receptor. Machaon's meta-analysis of the results highlights structural, chemical and transcriptional similarities between the Spike monomer and human proteins, indicating a multi-level viral mimicry. This extended analysis also revealed relationships of the Spike protein with biological processes such as ubiquitination and angiogenesis and highlighted different patterns in virus attachment among the studied variants. Available at: https://machaonweb.com .
Collapse
Affiliation(s)
- Panos Kakoulidis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Ilisia, 157 84, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., 115 27, Athens, Greece
| | - Ioannis S Vlachos
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Dana Building, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Dimitris Thanos
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., 115 27, Athens, Greece
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Makhanda (Grahamstown) 6140, Eastern Cape, South Africa
- Biomedical and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, PO 25026, Sharjah, UAE
- Institute for Health and Sport, Victoria University, Melbourne, PO Box 14428, VIC 8001, Melbourne, Australia
- The Vice Chancellery, The University of Notre Dame Australia, PO Box 1225, WA 6959, Fremantle, Australia
| | - Ioannis Z Emiris
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Ilisia, 157 84, Athens, Greece
- ATHENA Research and Innovation Center, Artemidos 6 & Epidavrou 15125, Marousi, Greece
| | - Ema Anastasiadou
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., 115 27, Athens, Greece.
| |
Collapse
|