1
|
Carli F, Della Pepa G, Sabatini S, Vidal Puig A, Gastaldelli A. Lipid metabolism in MASLD and MASH: From mechanism to the clinic. JHEP Rep 2024; 6:101185. [PMID: 39583092 PMCID: PMC11582433 DOI: 10.1016/j.jhepr.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 11/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is recognised as a metabolic disease characterised by excess intrahepatic lipid accumulation due to lipid overflow and synthesis, alongside impaired oxidation and/or export of these lipids. But where do these lipids come from? The main pathways related to hepatic lipid accumulation are de novo lipogenesis and excess fatty acid transport to the liver (due to increased lipolysis, adipose tissue insulin resistance, as well as excess dietary fatty acid intake, in particular of saturated fatty acids). Not only triglycerides but also other lipids are secreted by the liver and are associated with a worse histological profile in MASH, as shown by lipidomics. Herein, we review the role of lipid metabolism in MASLD/MASH and discuss the impact of weight loss (diet, bariatric surgery, GLP-1RAs) or other pharmacological treatments (PPAR or THRβ agonists) on hepatic lipid metabolism, lipidomics, and the resolution of MASH.
Collapse
Affiliation(s)
- Fabrizia Carli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Giuseppe Della Pepa
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Silvia Sabatini
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Antonio Vidal Puig
- Metabolic Research Laboratories, Medical Research Council Institute of Metabolic Science University of Cambridge, Cambridge CB2 0QQ UK
- Centro de Investigacion Principe Felipe Valencia 46012 Spain
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
2
|
Della Pepa G, Patrício BG, Carli F, Sabatini S, Astiarraga B, Ferrannini E, Camastra S, Gastaldelli A. GLP-1 Receptor Agonist Treatment Improves Fasting and Postprandial Lipidomic Profiles Independently of Diabetes and Weight Loss. Diabetes 2024; 73:1605-1614. [PMID: 38976482 DOI: 10.2337/db23-0972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Treatment with glucagon-like peptide 1 receptor agonists reduces liver steatosis and cardiometabolic risk (CMR). Few data are available on lipid metabolism, and no information is available on the postprandial lipidomic profile. Thus, we investigated how exenatide treatment changes lipid metabolism and composition during fasting and after a mixed-meal tolerance test (MMTT) in adults with severe obesity without diabetes. Thirty individuals (26 females and 4 males, 30-60 years old, BMI >40 kg/m2, HbA1c 5.76%) were assigned (1:1) to diet with exenatide 10 μg twice daily treatment (n = 15) or without treatment as control (n = 15) for 3 months. Fasting and postprandial lipidomic profile (by liquid chromatography quadrupole time-of-flight mass spectrometry) and fatty acid metabolism (following a 6-h MMTT/tracer study) and composition (by gas chromatography-mass spectrometry) were evaluated before and after treatment. Both groups had slight weight loss (-5.5% vs. -1.9%, exenatide vs. control; P = 0.052). During fasting, exenatide, compared with control, reduced some ceramides (CERs) and lysophosphatidylcholines (LPCs) previously associated with CMR, while relatively increasing unsaturated phospholipid species (phosphatidylcholine [PC], LPC) with protective effects on CMR, although concentrations of total lipid species were unchanged. During MMTT, both groups showed suppressed lipolysis equal to baseline, but exenatide significantly lowered free fatty acid clearance and postprandial triacyclglycerol (TAG) concentrations, particularly saturated TAGs with 44-54 carbons. Exenatide also reduced some postprandial CERs, PCs, and LPCs previously linked to CMR. These changes in lipidomic profile remained statistically significant after adjusting for weight loss. Exenatide improved fasting and postprandial lipidomic profiles associated with CMR mainly by reducing saturated postprandial TAGs and CERs independently of weight loss and diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | - Bárbara G Patrício
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Fabrizia Carli
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Silvia Sabatini
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Brenno Astiarraga
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Pere Virgili Institute for Health Research, Terragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ele Ferrannini
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Amalia Gastaldelli
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
3
|
Gisinger T, Reiter B, Preindl K, Stimpfl T, Gard LI, Baumgartner-Parzer S, Kautzky-Willer A, Leutner M. Investigating a New Way to Assess Metabolic Risk in Pregnant Females with Prior RYGB Surgery. Nutrients 2024; 16:2704. [PMID: 39203840 PMCID: PMC11357170 DOI: 10.3390/nu16162704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Obesity in pregnancy is linked to adverse clinical outcomes such as gestational diabetes. Recently, a risk score calculated by different ceramide concentrations was recognized as a new way to investigate cardiovascular risk. The aim was to analyze if the ceramide risk score and cardiometabolic risk vary between normal-weight, obese, and females with prior Roux-en-Y bypass surgery (RYGB) during pregnancy. METHODS Three cohorts were investigated: first, 25 pregnant females with a history of RYGB; second, 19 with preconception BMI ≥ 35 kg/m2; and third, 19 normal-weight (preconception BMI < 25 kg/m2). Around the 24th to 28th weeks of gestation routine laboratory assessments, 3 h 75 g oral and intravenous glucose tolerance tests were carried out. The correlation of ceramide risk scores and ceramide ratios (Cer(d18:1/18:0)/Cer(d18:1/16:0)) with metabolic parameters was analyzed via Pearson correlation. The cohorts were compared via ANOVA and unpaired t-tests. RESULTS The RYGB cohort had lower ceramide risk scores and ratios compared to obese pregnant females (7.42 vs. 9.34, p = 0.025; 0.33 vs. 0.47, p < 0.001). Ceramide risk score and ratio were found to correlate negatively with insulin sensitivity (measured with the Matsuda (r = -0.376, p = 0.031; r = -0.455, p = 0.008) and calculated sensitivity index (r = -0.358, p = 0.044; r = -0.621, p < 0.001) in females without RYGB. The ceramide risk score correlated positively with body fat in RYGB females (r = 0.650, p = 0.012). CONCLUSIONS We found that females after RYGB have lower ceramide risk scores and ceramide ratios compared to obese pregnant females, possibly indicating lower metabolic risk.
Collapse
Affiliation(s)
- Teresa Gisinger
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria; (T.G.); (L.-I.G.); (A.K.-W.)
| | - Birgit Reiter
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (B.R.); (K.P.); (T.S.)
- Joint Metabolome Facility, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Preindl
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (B.R.); (K.P.); (T.S.)
- Joint Metabolome Facility, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Stimpfl
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (B.R.); (K.P.); (T.S.)
| | - Liliana-Imi Gard
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria; (T.G.); (L.-I.G.); (A.K.-W.)
| | - Sabina Baumgartner-Parzer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria; (T.G.); (L.-I.G.); (A.K.-W.)
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria; (T.G.); (L.-I.G.); (A.K.-W.)
| | - Michael Leutner
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria; (T.G.); (L.-I.G.); (A.K.-W.)
| |
Collapse
|
4
|
Yan F, Liu C, Song D, Zeng Y, Zhan Y, Zhuang X, Qiao T, Wu D, Cheng Y, Chen H. Integration of clinical phenoms and metabolomics facilitates precision medicine for lung cancer. Cell Biol Toxicol 2024; 40:25. [PMID: 38691184 PMCID: PMC11063108 DOI: 10.1007/s10565-024-09861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024]
Abstract
Lung cancer is a common malignancy that is frequently associated with systemic metabolic disorders. Early detection is pivotal to survival improvement. Although blood biomarkers have been used in its early diagnosis, missed diagnosis and misdiagnosis still exist due to the heterogeneity of lung cancer. Integration of multiple biomarkers or trans-omics results can improve the accuracy and reliability for lung cancer diagnosis. As metabolic reprogramming is a hallmark of lung cancer, metabolites, specifically lipids might be useful for lung cancer detection, yet systematic characterizations of metabolites in lung cancer are still incipient. The present study profiled the polar metabolome and lipidome in the plasma of lung cancer patients to construct an inclusive metabolomic atlas of lung cancer. A comprehensive analysis of lung cancer was also conducted combining metabolomics with clinical phenotypes. Furthermore, the differences in plasma lipid metabolites were compared and analyzed among different lung cancer subtypes. Alcohols, amides, and peptide metabolites were significantly increased in lung cancer, while carboxylic acids, hydrocarbons, and fatty acids were remarkably decreased. Lipid profiling revealed a significant increase in plasma levels of CER, PE, SM, and TAG in individuals with lung cancer as compared to those in healthy controls. Correlation analysis confirmed the association between a panel of metabolites and TAGs. Clinical trans-omics studies elucidated the complex correlations between lipidomic data and clinical phenotypes. The present study emphasized the clinical importance of lipidomics in lung cancer, which involves the correlation between metabolites and the expressions of other omics, ultimately influencing clinical phenotypes. This novel trans-omics network approach would facilitate the development of precision therapy for lung cancer.
Collapse
Affiliation(s)
- Furong Yan
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Chanjuan Liu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Hematology, Xiang'an Hospital, Xiamen University School of Medicine, Xiamen, 361101, China
| | - Dongli Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Clinical Bioinformatics, Shanghai, 200032, China
| | - Yiming Zeng
- Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Xibing Zhuang
- Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Duojiao Wu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, 200032, China.
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan-Xuhui Hospital, Fudan University, 366 North Longchuan Rd, Shanghai, 200237, China.
| |
Collapse
|
5
|
Peschel G, Krautbauer S, Weigand K, Grimm J, Höring M, Liebisch G, Müller M, Buechler C. Rising Lysophosphatidylcholine Levels Post-Hepatitis C Clearance. Int J Mol Sci 2024; 25:1198. [PMID: 38256273 PMCID: PMC10816147 DOI: 10.3390/ijms25021198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatitis C virus (HCV) infection alters lysophosphatidylcholine (LPC) metabolism, enhancing viral infectivity and replication. Direct-acting antivirals (DAAs) effectively treat HCV and rapidly normalize serum cholesterol. In serum, LPC species are primarily albumin-bound but are also present in lipoprotein particles. This study aims to assess the impact of HCV eradication on serum LPC species levels in patients infected with HCV. Therefore, 12 different LPC species were measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the sera of 178 patients with chronic HCV infections at baseline, and in 176 of these patients after therapy with DAAs. All LPC species increased at 4 and 12 weeks post-initiation of DAA therapy. The serum profiles of the LPC species were similar before and after the viral cure. Patients with HCV and liver cirrhosis exhibited lower serum levels of all LPC species, except LPC 16:1, both before and after DAA treatment. Percentages of LPC 18:1 (relative to the total LPC level) were higher, and % LPC 22:5 and 22:6 were lower in cirrhotic compared to non-cirrhotic patients at baseline and at the end of therapy. LPC species levels inversely correlated with the model of end-stage liver disease score and directly with baseline and post-therapy albumin levels. Receiver operating characteristic curve analysis indicated an area under the curve of 0.773 and 0.720 for % LPC 18:1 (relative to total LPC levels) for classifying fibrosis at baseline and post-therapy, respectively. In summary, HCV elimination was found to increase all LPC species and elevated LPC 18:1 relative to total LPC levels may have pathological significance in HCV-related liver cirrhosis.
Collapse
Affiliation(s)
- Georg Peschel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Internal Medicine, Klinikum Fürstenfeldbruck, 82256 Fürstenfeldbruck, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Kilian Weigand
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Gastroenterology, Gemeinschaftsklinikum Mittelrhein, 56073 Koblenz, Germany
| | - Jonathan Grimm
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| |
Collapse
|
6
|
Yuan L, Verhoeven A, Blomberg N, van Eyk HJ, Bizino MB, Rensen PCN, Jazet IM, Lamb HJ, Rabelink TJ, Giera M, van den Berg BM. Ethnic Disparities in Lipid Metabolism and Clinical Outcomes between Dutch South Asians and Dutch White Caucasians with Type 2 Diabetes Mellitus. Metabolites 2024; 14:33. [PMID: 38248836 PMCID: PMC10819672 DOI: 10.3390/metabo14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) poses a higher risk for complications in South Asian individuals compared to other ethnic groups. To shed light on potential mediating factors, we investigated lipidomic changes in plasma of Dutch South Asians (DSA) and Dutch white Caucasians (DwC) with and without T2DM and explore their associations with clinical features. Using a targeted quantitative lipidomics platform, monitoring over 1000 lipids across 17 classes, along with 1H NMR based lipoprotein analysis, we studied 51 healthy participants (21 DSA, 30 DwC) and 92 T2DM patients (47 DSA, 45 DwC) from the MAGNetic resonance Assessment of VICTOza efficacy in the Regression of cardiovascular dysfunction in type 2 dIAbetes mellitus (MAGNA VICTORIA) study. This comprehensive mapping of the circulating lipidome allowed us to identify relevant lipid modules through unbiased weighted correlation network analysis, as well as disease and ethnicity related key mediatory lipids. Significant differences in lipidomic profiles, encompassing various lipid classes and species, were observed between T2DM patients and healthy controls in both the DSA and DwC populations. Our analyses revealed that healthy DSA, but not DwC, controls already exhibited a lipid profile prone to develop T2DM. Particularly, in DSA-T2DM patients, specific lipid changes correlated with clinical features, particularly diacylglycerols (DGs), showing significant associations with glycemic control and renal function. Our findings highlight an ethnic distinction in lipid modules influencing clinical outcomes in renal health. We discover distinctive ethnic disparities of the circulating lipidome and identify ethnicity-specific lipid markers. Jointly, our discoveries show great potential as personalized biomarkers for the assessment of glycemic control and renal function in DSA-T2DM individuals.
Collapse
Affiliation(s)
- Lushun Yuan
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.V.); (N.B.); (M.G.)
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.V.); (N.B.); (M.G.)
| | - Huub J. van Eyk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.J.v.E.); (I.M.J.)
| | - Maurice B. Bizino
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.B.B.); (H.J.L.)
| | - Patrick C. N. Rensen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.J.v.E.); (I.M.J.)
| | - Ingrid M. Jazet
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.J.v.E.); (I.M.J.)
| | - Hildo J. Lamb
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.B.B.); (H.J.L.)
| | - Ton J. Rabelink
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.V.); (N.B.); (M.G.)
| | - Bernard M. van den Berg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Denimal D, Béland-Bonenfant S, Pais-de-Barros JP, Rouland A, Bouillet B, Duvillard L, Vergès B, Petit JM. Plasma ceramides are associated with MRI-based liver fat content but not with noninvasive scores of liver fibrosis in patients with type 2 diabetes. Cardiovasc Diabetol 2023; 22:310. [PMID: 37940926 PMCID: PMC10634084 DOI: 10.1186/s12933-023-02049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND There is growing evidence that ceramides play a significant role in the onset and progression of non-alcoholic fatty liver disease (NAFLD), a highly prevalent condition in patients with type 2 diabetes associated with hepatic and cardiovascular events. However, the relationship between plasma ceramide levels and NAFLD severity in type 2 diabetes remains unclear. The main purpose of the present study was to investigate whether circulating levels of ceramides in patients with type 2 diabetes are associated with liver steatosis assessed by the highly accurate magnetic resonance imaging proton density fat fraction (MRI-PDFF). The secondary objective was to assess the relationship between plasma ceramides and noninvasive scores of liver fibrosis. METHODS In this cross-sectional single-center study, plasma concentrations of 7 ceramides were measured by liquid chromatography-mass spectrometry in 255 patients with type 2 diabetes (GEPSAD cohort). Liver fat content was assessed by MRI-PDFF, and noninvasive scores of liver fibrosis (i.e. Fibrosis-4 index, NAFLD Fibrosis Score, FibroTest® and Fibrotic NASH Index) were calculated. A validation cohort of 80 patients with type 2 diabetes was also studied (LIRA-NAFLD cohort). RESULTS Liver steatosis, defined as a liver fat content > 5.56%, was found in 62.4 and 82.5% of individuals with type 2 diabetes in the GEPSAD and LIRA-NAFLD cohorts, respectively. In GEPSAD, MRI-PDFF-measured liver fat content was positively associated with plasma levels of total ceramides (r = 0.232, p = 0.0002), and 18:0, 20:0, 22:0 and 24:0 ceramides in univariate analysis (p ≤ 0.0003 for all). In multivariate analysis, liver fat content remained significantly associated with total ceramides (p = 0.001), 18:0 (p = 0.006), 22:0 (p = 0.0009) and 24:0 ceramides (p = 0.0001) in GEPSAD, independently of age, diabetes duration, body mass index and dyslipidemia. Overall, similar relationship between plasma ceramides and liver fat content was observed in the LIRA-NAFLD validation cohort. No significant association was found between plasma ceramides and noninvasive scores of fibrosis after adjustment for age in both cohorts. CONCLUSIONS Plasma ceramide levels are associated with liver steatosis in patients with type 2 diabetes, independently of traditional risk factors for NAFLD. The independent association between plasma ceramides and liver steatosis adds new insights regarding the relationship between ceramides and NAFLD in type 2 diabetes.
Collapse
Affiliation(s)
- Damien Denimal
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France.
- Department of Biochemistry, CHU Dijon Bourgogne, Dijon, F-21079, France.
| | - Sarah Béland-Bonenfant
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | | | - Alexia Rouland
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Benjamin Bouillet
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Laurence Duvillard
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Biochemistry, CHU Dijon Bourgogne, Dijon, F-21079, France
| | - Bruno Vergès
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Jean-Michel Petit
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| |
Collapse
|
8
|
Wretlind A, Curovic VR, de Zawadzki A, Suvitaival T, Xu J, Zobel EH, von Scholten BJ, Ripa RS, Kjaer A, Hansen TW, Vilsbøll T, Vestergaard H, Rossing P, Legido-Quigley C. Ceramides are decreased after liraglutide treatment in people with type 2 diabetes: a post hoc analysis of two randomized clinical trials. Lipids Health Dis 2023; 22:160. [PMID: 37752566 PMCID: PMC10521385 DOI: 10.1186/s12944-023-01922-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Specific ceramides have been identified as risk markers for cardiovascular disease (CVD) years before onset of disease. Treatment with the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide has been shown to induce beneficial changes in the lipid profile and reduce the risk of CVD. Reducing lipotoxic lipids with an antidiabetic drug therapy could be a path towards precision medicine approaches for the treatment of complications to diabetes. In this post-hoc study, an investigation was carried out on the effect of liraglutide on CVD-risk associated ceramides in two randomized clinical trials including participants with type 2 diabetes (T2D). METHODS This study analyzed plasma samples from two independent randomized placebo-controlled clinical trials. The first trial, Antiproteinuric Effects of Liraglutide Treatment (LirAlbu12) followed a crossover design where 27 participants were treated for 12 weeks with either liraglutide (1.8 mg/d) or placebo, followed by a four-week washout period, and then another 12 weeks of the other treatment. The second clinical trial, Effect of Liraglutide on Vascular Inflammation in Type-2 Diabetes (LiraFlame26), lasted for 26 weeks and followed a parallel design, where 102 participants were randomized 1:1 to either liraglutide or placebo. Heresix prespecified plasma ceramides were measured using liquid chromatography mass spectrometry and assessed their changes using linear mixed models. Possible confounders were assessed with mediation analyses. RESULTS In the LiraFlame26 trial, 26-week treatment with liraglutide resulted in a significant reduction of two ceramides associated with CVD risk, C16 Cer and C24:1 Cer (p < 0.05) compared to placebo. None of the remaining ceramides showed statistically significant changes in response to liraglutide treatment compared to placebo. Significant changes in ceramides were not found after 12-weeks of liraglutide treatment in the LirAlbu12 trial. Mediation analyses showed that weight loss did not affect ceramide reduction. CONCLUSIONS It was demonstrated that treatment with liraglutide resulted in a reduction in C16 Cer and C24:1 Cer after 26 weeks of treatment. These findings suggest the GLP-1RA can be used to modulate ceramides in addition to its other properties. TRIAL REGISTRATION Clinicaltrial.gov identifier: NCT02545738 and NCT03449654.
Collapse
Affiliation(s)
- Asger Wretlind
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Jin Xu
- King's College London, London, UK
| | - Emilie Hein Zobel
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk A/S, Måløv, Denmark
| | | | - Rasmus Sejersten Ripa
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
9
|
Zhang F, Ding Y, Zhang B, He M, Wang Z, Lu C, Kang Y. Analysis of Methylome, Transcriptome, and Lipid Metabolites to Understand the Molecular Abnormalities in Polycystic Ovary Syndrome. Diabetes Metab Syndr Obes 2023; 16:2745-2763. [PMID: 37720421 PMCID: PMC10503565 DOI: 10.2147/dmso.s421947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose This study aimed to identify differentially methylated genes (DMGs) and differentially expressed genes (DEGs) to investigate new biomarkers for the diagnosis and treatment of polycystic ovary syndrome (PCOS). Methods To explore the potential biomarkers of PCOS diagnosis and treatment, we performed methyl-binding domain sequencing (MBD-seq) and RNA sequencing (RNA-seq) on ovarian granulosa cells (GCs) from PCOS patients and healthy controls. MBD-seq was also performed on the ovarian tissue of constructed prenatally androgenized (PNA) mice. Differential methylation and expression analysis were implemented to identify DMGs and DEGs, respectively. The identified gene was further verified by real-time quantitative PCR (RT-qPCR) and methylation-specific PCR (MSP) in clinical samples. Furthermore, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was carried out on PCOS patients and healthy controls to identify differential lipid metabolites. Results Compared to the control group, 13,526 DMGs related to the promoter region and 2429 DEGs were found. The function analysis of DMGs and DEGs showed that they were mainly enriched in glycerophospholipid, ovarian steroidogenesis, and other lipid metabolic pathways. Moreover, 5753 genes in DMGs related to the promoter region were screened in the constructed PNA mice. Integrating the DMGs data from PCOS patients and PNA mice, we identified the following 8 genes: CDC42EP4, ERMN, EZR, PIK3R1, ARHGEF18, NECTIN2, TSC2, and TACSTD2. RT-qPCR and MSP verification results showed that the methylation and expression of TACSTD2 were consistent with sequencing data. Additionally, 15 differential lipid metabolites were shown in the serum of PCOS patients. The differential lipids were involved in glycerophospholipid and glycerolipid metabolism. Conclusion Using integration of methylome and lipid metabolites profiling we identified 8 potential epigenetic markers and 15 potential lipid metabolite markers for PCOS. Our results suggest that aberrant DNA methylation and lipid metabolite disorders may provide novel insights into the diagnosis and etiology of PCOS.
Collapse
Affiliation(s)
- Fei Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yicen Ding
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Bohan Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Mengju He
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhijiang Wang
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical University, Ningbo, People’s Republic of China
| | - Chunbo Lu
- Department of Obstetrics and Gynecology, Qiuai Central Health Center, Ningbo, People’s Republic of China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Cho YK, Lee S, Lee J, Doh J, Park JH, Jung YS, Lee YH. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med 2023; 55:1955-1973. [PMID: 37653032 PMCID: PMC10545718 DOI: 10.1038/s12276-023-01071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Peschel G, Weigand K, Grimm J, Müller M, Krautbauer S, Höring M, Liebisch G, Buechler C. Gender-Specific Differences in Serum Sphingomyelin Species in Patients with Hepatitis C Virus Infection-Sphingomyelin Species Are Related to the Model of End-Stage Liver Disease (MELD) Score in Male Patients. Int J Mol Sci 2023; 24:8402. [PMID: 37176109 PMCID: PMC10179471 DOI: 10.3390/ijms24098402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Hepatitis C virus (HCV) replication depends on cellular sphingomyelin (SM), but serum SM composition in chronic HCV infection has been hardly analyzed. In this work, 18 SM species could be quantified in the serum of 178 patients with chronic HCV infection before therapy with direct-acting antivirals (DAAs) and 12 weeks later, when therapy was completed. Six SM species were higher in the serum of females than males before therapy and nine at the end of therapy; thus, sex-specific analysis was performed. Type 2 diabetes was associated with lower serum levels of SM 36:2;O2 and 38:2;O2 in men. Serum SM species did not correlate with the viral load in both sexes. Of note, three SM species were lower in males infected with HCV genotype 3 in comparison to genotype 1 infection. These SM species normalized after viral cure. SM 38:1;O2, 40:1;O2, 41:1;O2, and 42:1;O2 (and, thus, total SM levels) were higher in the serum of both sexes at the end of therapy. In males, SM 39:1;O2 was induced in addition, and higher levels of all of these SM species were already detected at 4 weeks after therapy has been started. Serum lipids are related to liver disease severity, and in females 15 serum SM species were low in patients with liver cirrhosis before initiation of and after treatment with DAAs. The serum SM species did not correlate with the model of end-stage liver disease (MELD) score in the cirrhosis and the non-cirrhosis subgroups in females. In HCV-infected male patients, nine SM species were lower in the serum of patients with cirrhosis before DAA treatment and eleven at the end of the study. Most of the SM species showed strong negative correlations with the MELD score in the male cirrhosis patients before DAA treatment and at the end of therapy. Associations of SM species with the MELD score were not detected in the non-cirrhosis male subgroup. In summary, the current analysis identified sex-specific differences in the serum levels of SM species in HCV infection, in liver cirrhosis, and during DAA therapy. Correlations of SM species with the MELD score in male but not in female patients indicate a much closer association between SM metabolism and liver function in male patients.
Collapse
Affiliation(s)
- Georg Peschel
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Internal Medicine, Klinikum Fürstenfeldbruck, 82256 Fürstenfeldbruck, Germany
| | - Kilian Weigand
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Gastroenterology, Gemeinschaftsklinikum Mittelrhein, 56073 Koblenz, Germany
| | - Jonathan Grimm
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| |
Collapse
|
12
|
Denimal D, Bergas V, Pais-de-Barros JP, Simoneau I, Demizieux L, Passilly-Degrace P, Bouillet B, Petit JM, Rouland A, Bataille A, Duvillard L, Vergès B. Liraglutide reduces plasma dihydroceramide levels in patients with type 2 diabetes. Cardiovasc Diabetol 2023; 22:104. [PMID: 37143040 PMCID: PMC10158384 DOI: 10.1186/s12933-023-01845-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Emerging evidence supports that dihydroceramides (DhCer) and ceramides (Cer) contribute to the pathophysiology of insulin resistance and liver steatosis, and that their circulating concentrations are independently associated with cardiovascular outcomes. Circulating DhCer levels are increased in patients with type 2 diabetes (T2D). On the other hand, the GLP-1 receptor agonist liraglutide reduces major adverse cardiac events, insulin resistance and liver steatosis in T2D patients. The main purpose of the present study was therefore to investigate whether liraglutide decreases circulating levels of DhCer and Cer in T2D patients, which could be a mechanism involved in its cardiometabolic benefits. The secondary purpose was to assess the relationship between liraglutide-induced changes in DhCer/Cer levels and insulin resistance and liver steatosis. METHODS Plasma concentrations of 11 DhCer and 15 Cer species were measured by a highly-sensitive mass spectrometry system in 35 controls and 86 T2D patients before and after 6 months of liraglutide (1.2 mg/day). Insulin resistance was estimated by the triglyceride-glucose (TyG) index. Liver fat content (LFC) was assessed in 53 patients by proton magnetic resonance spectroscopy. RESULTS Plasma levels of total DhCer, 7 DhCer and 7 Cer species were increased in T2D patients compared to controls. Liraglutide decreased total DhCer by 15.1% (p = 0.005), affecting 16:0 (p = 0.037), 18:0 (p < 0.0001), 18:1 (p = 0.0005), 20:0 (p = 0.0003), 23:0 (p = 0.005) and 24:1 (p = 0.04) species. Total plasma Cer did not significantly change after liraglutide (p = 0.18), but 5 Cer species decreased significantly, i.e. 18:0 and 18:1 (both p < 0.0001), 19:0 and 24:1 (both p < 0.01) and 26:1 (p = 0.04). In multivariate analysis, the reduction in DhCer after liraglutide was independently associated with the reduction in LFC (p = 0.0005) and in TyG index (p = 0.05). CONCLUSIONS Liraglutide reduces plasma levels of numerous DhCer and Cer species in T2D patients, which may contribute to the cardiovascular benefit observed in the LEADER trial. The independent association between the decrease in plasma DhCer level with the reduction in LFC and TyG index adds new insights regarding the relationship between DhCer, liver steatosis and insulin resistance. Trial registration ClinicalTrials.gov identifier: NCT02721888.
Collapse
Affiliation(s)
- Damien Denimal
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France.
- Department of Biochemistry, CHU Dijon Bourgogne, 21079, Dijon, France.
| | - Victoria Bergas
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Lipidomic Analytical Platform, University of Burgundy, 21000, Dijon, France
| | - Jean-Paul Pais-de-Barros
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Lipidomic Analytical Platform, University of Burgundy, 21000, Dijon, France
| | - Isabelle Simoneau
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| | | | | | - Benjamin Bouillet
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| | - Jean-Michel Petit
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| | - Alexia Rouland
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| | | | - Laurence Duvillard
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21079, Dijon, France
| | - Bruno Vergès
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| |
Collapse
|
13
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
14
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
15
|
Zhu C, Huai Q, Zhang X, Dai H, Li X, Wang H. Insights into the roles and pathomechanisms of ceramide and sphigosine-1-phosphate in nonalcoholic fatty liver disease. Int J Biol Sci 2023; 19:311-330. [PMID: 36594091 PMCID: PMC9760443 DOI: 10.7150/ijbs.78525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), as one of the main causes of chronic liver disease worldwide, encompasses a spectrum of liver conditions that are not caused by other etiology, such as overt alcohol consumption, from simple steatosis to more aggressive non-alcoholic steatohepatitis (NASH) that involves liver inflammation and fibrosis, and to the lethal cirrhosis that may result in liver cancer and liver failure. The molecular mechanisms governing the transition from steatosis to NASH remain not fully understood, but the hepatic lipidome is extensively altered in the setting of steatosis and steatohepatitis, which also correlate with disease progression. With the tremendous advancement in the field of lipidomics in last two decades, a better understanding of the specific role of sphingolipids in fatty liver disease has taken shape. Among the numerous lipid subtypes that accumulate, ceramides are particularly impactful. On the one hand, excessive ceramides deposition in the liver cause hepatic steatosis. On the other hand, ceramides as lipotoxic lipid have significant effects on hepatic inflammation, apoptosis and insulin resistance that contribute to NAFLD. In this review, we summarize and evaluate current understanding of the multiple roles of ceramides in the onset of fatty liver disease and the pathogenic mechanisms underlying their effects, and we also discuss recent advances and challenges in pharmacological interventions targeting ceramide metabolism for the treatment of NAFLD.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qian Huai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hanren Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaolei Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|