1
|
Dai Y, Hu M, Guo S, Wu F, Han Y, Ni S, Li S, Zhu Z, Yuan W, Zhao X. Pharmacokinetic interaction between SHR2554 and fluconazole: A single-center, open-label and one-sequence crossover phase I trial in healthy Chinese subjects. Eur J Pharm Sci 2025:107163. [PMID: 40490061 DOI: 10.1016/j.ejps.2025.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/17/2025] [Accepted: 06/07/2025] [Indexed: 06/11/2025]
Abstract
SHR2554, a highly selective oral EZH2 inhibitor, shows promise in treating hematologic malignancies. However, its metabolism via CYP3A4 raises concerns about drug-drug interactions. This study evaluates the impact of fluconazole, a moderate CYP3A4 inhibitor, on the pharmacokinetics and safety implications of SHR2554. We conducted a single-center, open-label, single-dose, single-sequence crossover phase I trial. 18 Chinese healthy subjects were orally administered SHR2554 100 mg on Day 1, fluconazole 400 mg on Day 4 and 200 mg QD from Days 5 to 6. SHR2554 100mg co-administrated with fluconazole 200 mg on Day 7, and fluconazole 200 mg QD from Days 8 to 9. Pharmacokinetic parameters were compared after subjects were administered SHR2554 alone and in combination with fluconazole. Cmax, AUC0-t, and AUC0-∞ were significantly increased when SHR2554 was co-administered with fluconazole. The co-administration led to a 3.29-, 4.79-, and 4.13-fold increase in Cmax, AUC0-t, and AUC0-∞, respectively. Safety evaluations indicated that the observed treatment-emergent adverse events were mild and transient. These findings underline the necessity of caution when co-administered SHR2554 with moderate CYP3A4 inhibitors in clinical settings, providing crucial insights for optimizing future clinical trials.
Collapse
Affiliation(s)
- Yuyang Dai
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang Road, Beijing 100730, P.R. China
| | - Minwan Hu
- Department of Clinical Pharmacology, Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Shaojie Guo
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang Road, Beijing 100730, P.R. China
| | - Feng Wu
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang Road, Beijing 100730, P.R. China
| | - Ying Han
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang Road, Beijing 100730, P.R. China
| | - Siyang Ni
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang Road, Beijing 100730, P.R. China
| | - Shaorong Li
- Department of Clinical Pharmacology, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai 201203, P.R. China
| | - Zhenyu Zhu
- Department of Clinical Pharmacology, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai 201203, P.R. China
| | - Weilan Yuan
- Department of Clinical Pharmacology, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai 201203, P.R. China
| | - Xiuli Zhao
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang Road, Beijing 100730, P.R. China.
| |
Collapse
|
2
|
Qiu Y, Yu W, Zhang X, Zhang M, Ni Y, Lai S, Wu Q. Upregulation of OGT-mediated EZH2 O-GlcNAcylation Promotes Human Umbilical Vein Endothelial Cell Proliferation, Invasion, Migration, and Tube Formation in Gestational Diabetes Mellitus. Cell Biochem Biophys 2025; 83:2461-2470. [PMID: 39751742 DOI: 10.1007/s12013-024-01655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot. RT-qPCR and western blot assays were used to test the OGT overexpression and EZH2 silencing levels. CCK-8, EdU, wound healing, and transwell invasion assays were used to analyze the cell proliferative, migratory, and invasive abilities. Tube formation assay was performed to evaluate angiogenesis ability of cells. Western blot assay was performed to estimate vascular endothelial growth factor (VEGF) and p-VEGFR2 levels in cells. The binding of O-GlcNAc and EZH2 after OGT overexpression was measured by Co-IP assay. The results showed that OGT, O-GlcNAc, EZH2, and HEK27me3 expressions were declined in GDM-HUVECs. OGT overexpression induced the proliferation, migration, and invasion of GDM-HUVECs, and also elevated angiogenesis and the expressions of VEGF and p-VEGFR2 in cells. O-GlcNAc, EZH2, and HEK27me3 expressions were upregulated after OGT overexpression. OGT upregulation induced the binding between O-GlcNAc and EZH2. EZH2 silencing attenuated the promotion of OGT overexpression on the proliferative, invasive, migratory, and angiogenic capacities of GDM-HUVECs. To be concluded, OGT overexpression stabilized EZH2 expression by promoting O-GlcNAcylation modification of EZH2, and further enhanced proliferation, migration, and invasion as well as angiogenesis of GDM-HUVECs. While these effects were decayed after EZH2 absenting. Overall, the modulation of OGT on endothelial dysfunction in GDM provides a novel perspective for the clinical treatment of GDM.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China.
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China.
| | - Weiwei Yu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Mingjing Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Yan Ni
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Shaoyang Lai
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Quanfeng Wu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| |
Collapse
|
3
|
Molina B, González-Mariscal G, Camacho-Arroyo I. Expression, distribution, and function of sex hormone receptors in the rabbit brain. Horm Behav 2025; 173:105762. [PMID: 40403422 DOI: 10.1016/j.yhbeh.2025.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Sex hormones such as estradiol, progesterone, and testosterone are crucial for vertebrate brain functions by interacting with their specific receptors. In rabbits, these hormones regulate sexual behavior, scent marking, nest building, and nipple searching across different brain regions. However, information on sex hormone receptors in the rabbit brain is limited. We examined intracellular progesterone (PR), estrogen (ER), and androgen receptors (AR) in the rabbit brain. PR activation by progesterone is associated with pregnancy and maternal behaviors like nest building and nipple searching. PR is expressed in female and male rabbits' cerebral cortex, hypothalamus, preoptic area, and hippocampus. In males, it is also found in the olfactory bulb, mesencephalon, and cerebellum. Rabbits express two ER subtypes, ERα and ERβ, with different expression patterns and functions. The former is in the amygdala, bed nucleus of the stria terminalis, hippocampus, hypothalamus, preoptic area, septum, and thalamus of females. In males, ERα is expressed in the hypothalamus, olfactory bulb, prefrontal cortex, preoptic area, mesencephalon, and cerebellum. Both ERs are located in male rabbits' amygdala, claustrum, and hippocampus. ERs influence estrous behavior and chinning. ERα has a role in rabbit hippocampus development and plasticity. AR is expressed in male rabbit hypothalamus, olfactory bulb, prefrontal cortex, hippocampus, preoptic area, mesencephalon, and cerebellum, related to sexual behavior and chinning. Interestingly, sex hormones regulate their own receptor expression and those of other sex hormones. Thus, estradiol regulates PR expression. This review summarizes the expression and distribution of sex hormone receptors in the rabbit brain and their behavioral role.
Collapse
Affiliation(s)
- Beatriz Molina
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| |
Collapse
|
4
|
Senekowitsch S, Freitag T, Dubinski D, Freiman TM, Maletzki C, Hinz B. Validation of an LC-MS/MS Method for the Simultaneous Intracellular Quantification of the CDK4/6 Inhibitor Abemaciclib and the EZH2 Inhibitors GSK126 and Tazemetostat. Pharmaceutics 2025; 17:433. [PMID: 40284428 PMCID: PMC12030624 DOI: 10.3390/pharmaceutics17040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Inhibitors of cyclin-dependent kinases (CDKs) and epigenetic modifier enhancer of zeste homolog 2 (EZH2) have emerged as promising options in the pharmacotherapy of malignant tumors. Recently, we demonstrated synergistic antitumor effects of the CDK4/6 inhibitor abemaciclib and the EZH2 inhibitors GSK126 or tazemetostat in patient-derived glioblastoma (GBM) models. Importantly, all three drugs are substrates of the two most important plasma membrane multidrug transporters ABCB1 and ABCG2, with abemaciclib and tazemetostat also being inhibitors of these proteins. Methods: To investigate whether increased intracellular accumulation of either of the two drugs used in combination could have contributed to corresponding synergisms, we developed a simple LC-MS/MS method for simultaneous detection of the three substances in cell culture lysates. The method was validated in accordance with the current International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guideline M10 on bioanalytical method validation and study sample analysis. Results: All acceptance criteria were met. Subsequent analysis of intracellular drug concentrations confirmed increased cellular uptake of tazemetostat in the presence of abemaciclib in both GBM cell lines studied compared to single agent treatment. A comparable pattern was also observed for GSK126, but in only one of the two cell lines used. Conclusions: In conclusion, the observed synergistic antitumor effect could be partly due to increased intracellular accumulation, although this alone is certainly not sufficient to explain it. Overall, the developed method provides a valuable approach for characterizing interactions at the transport level and for predicting the efficiency of both anticancer substance classes in different cell lines.
Collapse
Affiliation(s)
- Stefan Senekowitsch
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany;
| | - Thomas Freitag
- Department of Medicine, Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Neurosurgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Thomas M. Freiman
- Department of Neurosurgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany;
| |
Collapse
|
5
|
Alemán OR, Quintero JC, Camacho-Arroyo I. The language of glioblastoma: A tale of cytokines and sex hormones communication. Neurooncol Adv 2025; 7:vdaf017. [PMID: 40351835 PMCID: PMC12063100 DOI: 10.1093/noajnl/vdaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Glioblastoma (GB) is the most aggressive and frequent tumor in the central nervous system and, in humans, represents the worst prognosis for cancer. GB develops a very complex microenvironment, recruiting and interacting with a variety of cells and soluble factors, including immune cells, cytokines, and sex hormones, that contribute to GB survival and progression. Recent evidence has shown a crosstalk between cytokine and sex hormone signaling in GB. This communication could provide GB resistance to treatments and malignancy. Then, how GB orchestrates this communication is a matter of interest. For instance, a critical interaction between tumor necrosis factor-beta (TGF-β) and estrogen receptor signaling has been reported in regulating epithelial-mesenchymal transition, an essential step in GB progression. Furthermore, an inhibition of TGF-β signaling by androgen receptor has been reported to promote GB tumorigenesis in men. Conversely, it has been described that cytokines regulate steroid hormone production in different organs, and this mechanism could be involved in GB development and progression. All these data suggest an intercommunication between the immune and endocrine systems in the tumor microenvironment. Thus, in this review, we focus on explaining the knowledge about this critical intercommunication system and its implication in GB progression.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, México
| | - Juan Carlos Quintero
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, México
| |
Collapse
|
6
|
Huang D, Mela A, Bhanu NV, Garcia BA, Canoll P, Casaccia P. PDGF-BB overexpression in p53 null oligodendrocyte progenitors increases H3K27me3 and induces transcriptional changes which favor proliferation. Neoplasia 2024; 57:101042. [PMID: 39216363 PMCID: PMC11402553 DOI: 10.1016/j.neo.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Proneural gliomas are brain tumors characterized by enrichment of oligodendrocyte progenitor cell (OPC) transcripts and genetic alterations. In this study we sought to identify transcriptional and epigenetic differences between OPCs with Trp53 deletion and PDGF-BB overexpression (BB-p53n) and those carrying only p53 deletion (p53n). In culture, the BB-p53n OPCs display growth characteristics more similar to glioma cells than p53n OPCs. When injected in mouse brains, BB-p53n OPC form tumors, while the p53n OPCs do not. Unbiased histone proteomics and transcriptomic analysis on these OPC populations identified higher levels of the histone H3K27me3 mark and lower levels of the histone H4K20me3. The transcriptome of the BB-p53n OPCs was characterized by higher levels of transcripts related to proliferation and cell adhesion compared to p53n OPCs. Pharmacological inhibition of the enzyme responsible for histone H3K27 trimethylation (EZH2i) in BB-p53n OPCs, reduced cell cycle transcripts and increased the expression of differentiation markers, but was not sufficient to restore their growth characteristics. This suggests that PDGF-BB overexpression in p53n OPCs favors the early stages of transformation, by promoting proliferation and halting differentiation in a H3K27me3-dependent pathway, and favoring growth characteristics in a H3K27me3 independent manner.
Collapse
Affiliation(s)
- Dennis Huang
- Program in Molecular, Cellular and Developmental Biology at The Graduate Center of The City University of New, York 365 5th Ave, New York, NY 10016, United States; Belfer Research Institute, City University of New York & Weill Cornell Medical College, 413 E 69th St, New York, NY 10021, United States; Neuroscience Initiative, Advance Science Research Center, Graduate Center of The City University of New York, 85 St Nicholas Terrace, New York, NY 10031, United States; Department of Biological Sciences, Hunter College, City University of New York, 695 Park Ave, New York, NY 10065, United States
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, United States
| | - Natarajan V Bhanu
- Department Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Benjamin A Garcia
- Department Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, United States
| | - Patrizia Casaccia
- Program in Molecular, Cellular and Developmental Biology at The Graduate Center of The City University of New, York 365 5th Ave, New York, NY 10016, United States; Neuroscience Initiative, Advance Science Research Center, Graduate Center of The City University of New York, 85 St Nicholas Terrace, New York, NY 10031, United States.
| |
Collapse
|
7
|
Sabour-Takanlou M, Sabour-Takanlou L, Biray-Avci C. EZH2-associated tumor malignancy: A prominent target for cancer treatment. Clin Genet 2024; 106:377-385. [PMID: 38881299 DOI: 10.1111/cge.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The discussion in this review centers around the significant relationships between EZH2 and the initiation, progression, metastasis, metabolism, drug resistance, and immune regulation of cancer. Polycomb group (PcG) proteins, which encompass two primary Polycomb repressor complexes (PRC1 and PRC2), have been categorized. PRC2 consists mainly of four subunits, namely EZH2, EED, SUZ12, and RbAp46/48. As the crucial catalytic component within the PRC2 complex, EZH2 plays a pivotal role in controlling a wide range of biological processes. Overexpression/mutations of EZH2 have been detected in a wide variety of tumors. Several mechanisms of EZH regulation have been identified, including regulation EZH2 mRNA by miRNAs, LncRNAs, accessibility to DNA via DNA-binding proteins, post-translational modifications, and transcriptional regulation. EZH2 signaling triggers cancer progression and may intervene with anti-tumor immunity; therefore it has charmed attention as an effective therapeutic target in cancer therapy. Numerous nucleic acid-based therapies have been used in the modification of EZH2. In addition to gene therapy approaches, pharmaceutical compounds can be used to target the EZH2 signaling pathway in the treatment of cancer. EZH2-associated tumor cells and immune cells enhance the effects of the immune response in a variety of human malignancies. The combination of epigenetic modifying agents, such as anti-EZH2 compounds with immunotherapy, could potentially be efficacious even in the context of immunosuppressive tumors. Summary, understanding the mechanisms underlying resistance to EZH2 inhibitors may facilitate the development of novel drugs to prevent or treat relapse in treated patients.
Collapse
Affiliation(s)
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Freitag T, Kaps P, Ramtke J, Bertels S, Zunke E, Schneider B, Becker AS, Koczan D, Dubinski D, Freiman TM, Wittig F, Hinz B, Westhoff MA, Strobel H, Meiners F, Wolter D, Engel N, Troschke-Meurer S, Bergmann-Ewert W, Staehlke S, Wolff A, Gessler F, Junghanss C, Maletzki C. Combined inhibition of EZH2 and CDK4/6 perturbs endoplasmic reticulum-mitochondrial homeostasis and increases antitumor activity against glioblastoma. NPJ Precis Oncol 2024; 8:156. [PMID: 39054369 PMCID: PMC11272933 DOI: 10.1038/s41698-024-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
He, we show that combined use of the EZH2 inhibitor GSK126 and the CDK4/6 inhibitor abemaciclib synergistically enhances antitumoral effects in preclinical GBM models. Dual blockade led to HIF1α upregulation and CalR translocation, accompanied by massive impairment of mitochondrial function. Basal oxygen consumption rate, ATP synthesis, and maximal mitochondrial respiration decreased, confirming disrupted endoplasmic reticulum-mitochondrial homeostasis. This was paralleled by mitochondrial depolarization and upregulation of the UPR sensors PERK, ATF6α, and IRE1α. Notably, dual EZH2/CDK4/6 blockade also reduced 3D-spheroid invasion, partially inhibited tumor growth in ovo, and led to impaired viability of patient-derived organoids. Mechanistically, this was due to transcriptional changes in genes involved in mitotic aberrations/spindle assembly (Rb, PLK1, RRM2, PRC1, CENPF, TPX2), histone modification (HIST1H1B, HIST1H3G), DNA damage/replication stress events (TOP2A, ATF4), immuno-oncology (DEPDC1), EMT-counterregulation (PCDH1) and a shift in the stemness profile towards a more differentiated state. We propose a dual EZH2/CDK4/6 blockade for further investigation.
Collapse
Affiliation(s)
- Thomas Freitag
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Philipp Kaps
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Justus Ramtke
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Sarah Bertels
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Emily Zunke
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Anne-Sophie Becker
- Institute of Pathology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Dirk Koczan
- Department of Immunology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Franziska Meiners
- Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Daniel Wolter
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Nadja Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Susanne Staehlke
- Institute for Cell Biology, University Medical Center Rostock, Rostock, Germany
| | - Annabell Wolff
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Florian Gessler
- Department of Neurosurgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany.
| |
Collapse
|
10
|
Wang J, Shen S, You J, Wang Z, Li Y, Chen Y, Tuo Y, Chen D, Yu H, Zhang J, Wang F, Pang X, Xiao Z, Lan Q, Wang Y. PRMT6 facilitates EZH2 protein stability by inhibiting TRAF6-mediated ubiquitination degradation to promote glioblastoma cell invasion and migration. Cell Death Dis 2024; 15:524. [PMID: 39043634 PMCID: PMC11266590 DOI: 10.1038/s41419-024-06920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Invasion and migration are the key hallmarks of cancer, and aggressive growth is a major factor contributing to treatment failure and poor prognosis in glioblastoma. Protein arginine methyltransferase 6 (PRMT6), as an epigenetic regulator, has been confirmed to promote the malignant proliferation of glioblastoma cells in previous studies. However, the effects of PRMT6 on glioblastoma cell invasion and migration and its underlying mechanisms remain elusive. Here, we report that PRMT6 functions as a driver element for tumor cell invasion and migration in glioblastoma. Bioinformatics analysis and glioma sample detection results demonstrated that PRMT6 is highly expressed in mesenchymal subtype or invasive gliomas, and is significantly negatively correlated with their prognosis. Inhibition of PRMT6 (using PRMT6 shRNA or inhibitor EPZ020411) reduces glioblastoma cell invasion and migration in vitro, whereas overexpression of PRMT6 produces opposite effects. Then, we identified that PRMT6 maintains the protein stability of EZH2 by inhibiting the degradation of EZH2 protein, thereby mediating the invasion and migration of glioblastoma cells. Further mechanistic investigations found that PRMT6 inhibits the transcription of TRAF6 by activating the histone methylation mark (H3R2me2a), and reducing the interaction between TRAF6 and EZH2 to enhance the protein stability of EZH2 in glioblastoma cells. Xenograft tumor assay and HE staining results showed that the expression of PRMT6 could promote the invasion of glioblastoma cells in vivo, the immunohistochemical staining results of mouse brain tissue tumor sections also confirmed the regulatory relationship between PRMT6, TRAF6, and EZH2. Our findings illustrate that PRMT6 suppresses TRAF6 transcription via H3R2me2a to enhance the protein stability of EZH2 to facilitate glioblastoma cell invasion and migration. Blocking the PRMT6-TRAF6-EZH2 axis is a promising strategy for inhibiting glioblastoma cell invasion and migration.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China.
| | - Shiquan Shen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Jian You
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
| | - Zhaotao Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Yan Li
- Department of Cardiology, The First Affiliated Hospital of University of Science and Technology of China, 230001, Hefei, China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Yonghua Tuo
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Danmin Chen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Haoming Yu
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Jingbo Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Fangran Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Xiao Pang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Zongyu Xiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Soochow University, 215124, Suzhou, China.
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China.
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China.
| |
Collapse
|
11
|
Huang D, Mela A, Bhanu NV, Garcia BA, Canoll P, Casaccia P. PDGF-BB overexpression in p53 null oligodendrocyte progenitors increases H3K27me3 and induces transcriptional changes which favor proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594214. [PMID: 38798631 PMCID: PMC11118351 DOI: 10.1101/2024.05.14.594214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proneural gliomas are brain tumors characterized by enrichment of oligodendrocyte progenitor cell (OPC) transcripts and genetic alterations. In this study we sought to identify transcriptional and epigenetic differences between OPCs with Trp53 deletion and PDGF-BB overexpression (BB-p53n), which form tumors when transplanted in mouse brains, and those carrying only p53 deletion (p53n), which do not. We used unbiased histone proteomics and RNA-seq analysis on these two genetically modified OPC populations and detected higher levels of H3K27me3 in BB-p53n compared to p53n OPCs. The BB-p53n OPC were characterized by higher levels of transcripts related to proliferation and lower levels of those related to differentiation. Pharmacological inhibition of histone H3K27 trimethylation in BB-p53n OPC reduced cell cycle transcripts and increased the expression of differentiation markers. These data suggest that PDGF-BB overexpression in p53 null OPC results in histone post-translational modifications and consequent transcriptional changes favoring proliferation while halting differentiation, thereby promoting the early stages of transformation.
Collapse
|
12
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
13
|
Sharma S, Wang SA, Yang WB, Lin HY, Lai MJ, Chen HC, Kao TY, Hsu FL, Nepali K, Hsu TI, Liou JP. First-in-Class Dual EZH2-HSP90 Inhibitor Eliciting Striking Antiglioblastoma Activity In Vitro and In Vivo. J Med Chem 2024; 67:2963-2985. [PMID: 38285511 PMCID: PMC10895674 DOI: 10.1021/acs.jmedchem.3c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Structural analysis of tazemetostat, an FDA-approved EZH2 inhibitor, led us to pinpoint a suitable site for appendage with a pharmacophoric fragment of second-generation HSP90 inhibitors. Resultantly, a magnificent dual EZH2/HSP90 inhibitor was pinpointed that exerted striking cell growth inhibitory efficacy against TMZ-resistant Glioblastoma (GBM) cell lines. Exhaustive explorations of chemical probe 7 led to several revelations such as (i) compound 7 increased apoptosis/necrosis-related gene expression, whereas decreased M phase/kinetochore/spindle-related gene expression as well as CENPs protein expression in Pt3R cells; (ii) dual inhibitor 7 induced cell cycle arrest at the M phase; (iii) compound 7 suppressed reactive oxygen species (ROS) catabolism pathway, causing the death of TMZ-resistant GBM cells; and (iv) compound 7 elicited substantial in vivo anti-GBM efficacy in experimental mice xenografted with TMZ-resistant Pt3R cells. Collectively, the study results confirm the potential of dual EZH2-HSP90 inhibitor 7 as a tractable anti-GBM agent.
Collapse
Affiliation(s)
- Sachin Sharma
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Shao-An Wang
- School
of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Bin Yang
- TMU
Research Center of Neuroscience, Taipei
Medical University, Taipei 110, Taiwan
| | - Hong-Yi Lin
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Jung Lai
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Hsien-Chung Chen
- TMU
Research Center of Neuroscience, Taipei
Medical University, Taipei 110, Taiwan
- Department
of Neurosurgery, Shuang Ho Hospital, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Tzu-Yuan Kao
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Feng-Lin Hsu
- School
of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kunal Nepali
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-I Hsu
- TMU
Research Center of Neuroscience, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University, Taipei 110, Taiwan
- TMU
Research Center of Cancer Translational Medicine, Taipei 110 Taiwan
| | - Jing-Ping Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center of Cancer Translational Medicine, Taipei 110 Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
14
|
Kim S, Jo S, Paek SH, Kang SS, Chung H. SUZ12 inhibition attenuates cell proliferation of glioblastoma via post-translational regulation of CDKN1B. Genes Genomics 2023; 45:1623-1632. [PMID: 37856053 DOI: 10.1007/s13258-023-01468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Human gliomas are aggressive brain tumors characterized by uncontrolled cell proliferation. Differential expression of Polycomb repressive complex 2 (PRC2) has been reported in various subtypes of glioma. However, the role of PRC2 in uncontrolled growth in glioma and its underlying molecular mechanisms remain to be elucidated. OBJECTIVE We aimed to investigate the functional role of PRC2 in human glioblastoma cell growth by silencing SUZ12, the non-catalytic core component of PRC2. METHODS Knockdown of SUZ12 was achieved by infecting T98G cells with lentivirus carrying sequences specifically targeting SUZ12 (shSUZ12). Gene expression was examined by quantitative PCR and western analysis. The impact of shSUZ12 on cell growth was assessed using a cell proliferation assay. Cell cycle distribution was analyzed by flow cytometry, and protein stability was evaluated in cycloheximide-treated cells. Subcellular localization was examined through immunofluorescence staining and biochemical cytoplasmic-nuclear fractionation. Gene expression analysis was also performed on human specimens from normal brain and glioblastoma patients. RESULTS SUZ12 knockdown (SUZ12 KD) led to widespread decrease in the PRC2-specific histone mark, accompanied by a slowdown of cell proliferation through G1 arrest. In SUZ12 KD cells, the degradation of CDKN1B protein was reduced, resulting from alterations in the MYC-SKP2-CDKN1B axis. Furthermore, nuclear localization of CDKN1B was enhanced in SUZ12 KD cells. Analysis of human glioblastoma samples yielded increased expression of EZH2 and MYC along with reduced CDKN1B compared to normal human brain tissue. CONCLUSION Our findings suggest a novel role for SUZ12 in cell proliferation through post-translational regulation of CDKN1B in glioblastoma.
Collapse
Affiliation(s)
- Sojin Kim
- Department of Biomedical Laboratory Science, Daegu Health College, Daegu, 41453, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Heekyoung Chung
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Pathology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
15
|
Bafiti V, Ouzounis S, Siapi E, Grypari IM, Theofanopoulos A, Panagiotopoulos V, Zolota V, Kardamakis D, Katsila T. Bioenergetic Profiling in Glioblastoma Multiforme Patients with Different Clinical Outcomes. Metabolites 2023; 13:362. [PMID: 36984801 PMCID: PMC10051505 DOI: 10.3390/metabo13030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The accumulation of cell biomass is associated with dramatically increased bioenergetic and biosynthetic demand. Metabolic reprogramming, once thought as an epiphenomenon, currently relates to disease progression, also in response to extracellular fate-decisive signals. Glioblastoma multiforme patients often suffer misdiagnosis, short survival time, low quality of life, and poor disease management options. Today, tumor genetic testing and histological analysis guide diagnosis and treatment. We and others appreciate that metabolites complement translational biomarkers and molecular signatures in disease profiling and phenotyping. Herein, we coupled a mixed-methods content analysis to a mass spectrometry-based untargeted metabolomic analysis on plasma samples from glioblastoma multiforme patients to delineate the role of metabolic remodeling in biological plasticity and, hence, disease severity. Following data processing and analysis, we established a bioenergetic profile coordinated by the mitochondrial function and redox state, lipids, and energy substrates. Our findings show that epigenetic modulators are key players in glioblastoma multiforme cell metabolism, in particular when microRNAs are considered. We propose that biological plasticity in glioblastoma multiforme is a mechanism of adaptation and resistance to treatment which is eloquently revealed by bioenergetics.
Collapse
Affiliation(s)
- Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Sotiris Ouzounis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Eleni Siapi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Ioanna Maria Grypari
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Kardamakis
- Department of Radiation Oncology, University of Patras Medical School, 26504 Patras, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
16
|
Scuderi SA, Filippone A, Basilotta R, Mannino D, Casili G, Capra AP, Chisari G, Colarossi L, Sava S, Campolo M, Esposito E, Paterniti I. GSK343, an Inhibitor of Enhancer of Zeste Homolog 2, Reduces Glioblastoma Progression through Inflammatory Process Modulation: Focus on Canonical and Non-Canonical NF-κB/IκBα Pathways. Int J Mol Sci 2022; 23:ijms232213915. [PMID: 36430394 PMCID: PMC9694970 DOI: 10.3390/ijms232213915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GB) is a tumor of the central nervous system characterized by high proliferation and invasiveness. The standard treatment for GB includes radiotherapy and chemotherapy; however, new therapies are needed. Particular attention was given to the role of histone methyltransferase enhancer of zeste-homolog-2 (EZH2) in GB. Recently, several EZH2-inhibitors have been developed, particularly GSK343 is well-known to regulate apoptosis and autophagy processes; however, its abilities to modulate canonical/non-canonical NF-κB/IκBα pathways or an immune response in GB have not yet been investigated. Therefore, this study investigated for the first time the effect of GSK343 on canonical/non-canonical NF-κB/IκBα pathways and the immune response, by an in vitro, in vivo and ex vivo model of GB. In vitro results demonstrated that GSK343 treatments 1, 10 and 25 μM significantly reduced GB cell viability, showing the modulation of canonical/non-canonical NF-κB/IκBα pathway activation. In vivo GSK343 reduced subcutaneous tumor mass, regulating canonical/non-canonical NF-κB/IκBα pathway activation and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Ex vivo results confirmed the anti-proliferative effect of GSK343 and also demonstrated its ability to regulate immune response through CXCL9, CXCL10 and CXCL11 expression in GB. Thus, GSK343 could represent a therapeutic strategy to counteract GB progression, thanks to its ability to modulate canonical/non-canonical NF-κB/IκBα pathways and immune response.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Serena Sava
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
- Correspondence:
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| |
Collapse
|
17
|
Chen HM, Nikolic A, Singhal D, Gallo M. Roles of Chromatin Remodelling and Molecular Heterogeneity in Therapy Resistance in Glioblastoma. Cancers (Basel) 2022; 14:4942. [PMID: 36230865 PMCID: PMC9563350 DOI: 10.3390/cancers14194942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) represent a therapy-resistant reservoir in glioblastoma (GBM). It is now becoming clear that epigenetic and chromatin remodelling programs link the stemlike behaviour of CSCs to their treatment resistance. New evidence indicates that the epigenome of GBM cells is shaped by intrinsic and extrinsic factors, including their genetic makeup, their interactions and communication with other neoplastic and non-neoplastic cells, including immune cells, and their metabolic niche. In this review, we explore how all these factors contribute to epigenomic heterogeneity in a tumour and the selection of therapy-resistant cells. Lastly, we discuss current and emerging experimental platforms aimed at precisely understanding the epigenetic mechanisms of therapy resistance that ultimately lead to tumour relapse. Given the growing arsenal of drugs that target epigenetic enzymes, our review addresses promising preclinical and clinical applications of epidrugs to treat GBM, and possible mechanisms of resistance that need to be overcome.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ana Nikolic
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Divya Singhal
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
Chen Z, Lin X, Wan Z, Xiao M, Ding C, Wan P, Li Q, Zheng S. High Expression of EZH2 Mediated by ncRNAs Correlates with Poor Prognosis and Tumor Immune Infiltration of Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13050876. [PMID: 35627262 PMCID: PMC9141487 DOI: 10.3390/genes13050876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is accompanied by a complex regulatory network. Increasing evidence suggests that an abnormal gene expression of EZH2 is associated with HCC progression. However, the molecular mechanism by which non-coding RNAs (ncRNAs) regulate EZH2 remains elusive. Methods: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to perform differential expression analysis and prognostic analysis. We used the Encyclopedia of RNA Interactomes (ENCORI) database to predict candidate miRNAs and lncRNAs that may bind to EZH2. Subsequently, the comprehensive analysis (including expression analysis, correlation analysis, and survival analysis) identified ncRNAs that contribute to EZH2 overexpression. Results: EZH2 was found to be upregulated in the majority of tumor types and associated with a poor prognosis. Hsa-miR-101-3p was identified as a target miRNA of EZH2. Additionally, SNHG6 and MALAT1 were identified as upstream lncRNAs of hsa-miR-101-3p. Meanwhile, correlation analysis revealed that EZH2 expression was significantly associated with the infiltration of several immune cell types in HCC. Conclusion: SNHG6 or MALAT1/hsa-miR-101-3p/EZH2 axis were identified as potential regulatory pathways in the progression of HCC.
Collapse
Affiliation(s)
- Zhitao Chen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
| | - Xin Lin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
- School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhenmiao Wan
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
- School of Medicine, Zhejiang Chinese Medical University Zhejiang Shuren College, Hangzhou 310003, China
| | - Min Xiao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
| | - Chenchen Ding
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
| | - Pengxia Wan
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
| | - Qiyong Li
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
- Correspondence: (Q.L.); (S.Z.); Tel.: +86-0571-56757021 (S.Z.)
| | - Shusen Zheng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
- School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (Q.L.); (S.Z.); Tel.: +86-0571-56757021 (S.Z.)
| |
Collapse
|