1
|
Long BY, Liao X, Liang X. The Hypothalamus and Pituitary Gland Regulate Reproduction and Are Involved in the Development of Polycystic Ovary Syndrome. Neuroendocrinology 2025; 115:315-334. [PMID: 39894018 DOI: 10.1159/000543877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex condition with unclear mechanisms, posing a challenge for prevention and treatment of PCOS. The role of the hypothalamus and pituitary gland in regulating female reproduction is critical. Abnormalities in the hypothalamus and pituitary can impair reproductive function. It is important to study hypothalamic and pituitary changes in patients with PCOS. SUMMARY This article reviews articles on the hypothalamus and PCOS with the goal of summarizing what abnormalities of the hypothalamic-pituitary-ovarian axis are present in patients with PCOS and to clarify the pathogenesis of PCOS. We find that the mechanisms by which the hypothalamus and pituitary regulate reproduction in girls are complex and are associated with altered sex hormone levels, obesity, and insulin resistance. Different animal models of PCOS are characterized by different alterations in the hypothalamus and pituitary and respond differently to different treatments, which correspond to the complex pathogenesis of patients with PCOS. KEY MESSAGES Arcuate nucleus (ARC) is associated with luteinizing hormone (LH) surges. Suprachiasmatic nucleus, ARC, and RP3V are associated with LH surges. Animal models of PCOS have different characteristics.
Collapse
Affiliation(s)
- Bin-Yang Long
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xipeng Liao
- Tianjin University of Technology, Tianjin, China
| | - Xin Liang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Osei-Ntansah A, Oliver T, Lofton T, Falzarano C, Carr K, Huang R, Wilson A, Damaser E, Harvey G, Rahman MA, Andrisse S. Liver Androgen Receptor Knockout Improved High-fat Diet Induced Glucose Dysregulation in Female Mice But Not Male Mice. J Endocr Soc 2024; 8:bvae021. [PMID: 38425436 PMCID: PMC10904101 DOI: 10.1210/jendso/bvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 03/02/2024] Open
Abstract
Previous research has indicated that liver androgen receptors may play a role in modulating disease. This study aims to investigate the pathophysiology of high-fat diet (HFD) induced dysglycemia in male and female liver androgen receptor knockout (LivARKO) mice. We performed metabolic tests on LivARKO female and male mice fed a HFD or a control diet (from Research Diets Inc.) during months 1 or 2 after starting the diet. Additionally, we performed Western blot and quantitative real-time PCR analysis on the livers of the mice to examine intermediates in the insulin signaling pathway. LivARKO-HFD female mice displayed no difference in glucose tolerance compared to female LivARKO-Control (Con) mice, whereas in wild-type female mice, HFD impaired glucose tolerance (IGT). Our data suggests that starting at 1 month, LivARKO may be protecting female mice from HFD-induced metabolic dysfunction. LivARKO-HFD female mice displayed significantly worse insulin sensitivity at 15 minutes compared to LivARKO-Con female mice, but, strangely, LivARKO-HFD female mice had significantly better insulin sensitivity at 60 and 90 minutes compared to LivARKO-Con female mice. Despite protecting against IGT, LivARKO did not protect against HFD-induced hyperinsulinemia in female mice. In contrast to females, male LivARKO-HFD mice displayed impaired glucose tolerance compared to male LivARKO-Con mice. Thus, LivARKO is not protective against HFD-induced glucose metabolic dysfunction in male mice. Lastly, LivARKO-HFD female mice maintained hepatic insulin sensitivity whereas LivARKO-HFD male mice displayed hepatic insulin resistance. These findings suggest that LivARKO delayed the onset of HFD-induced dysglycemia in female mice.
Collapse
Affiliation(s)
- Adjoa Osei-Ntansah
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Trinitee Oliver
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Taylor Lofton
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Claire Falzarano
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Kiana Carr
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Ruthe Huang
- From Prison Cells To PhD, Baltimore, MD 21224, USA
| | - Andre Wilson
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Ella Damaser
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Guyton Harvey
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Md Ahasanur Rahman
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Stanley Andrisse
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
3
|
Ubba V, Joseph S, Awe O, Jones D, Dsilva MK, Feng M, Wang J, Fu X, Akbar RJ, Bodnar BH, Hu W, Wang H, Yang X, Yang L, Yang P, Taib B, Ahima R, Divall S, Wu S. Reproductive Profile of Neuronal Androgen Receptor Knockout Female Mice With a Low Dose of DHT. Endocrinology 2024; 165:bqad199. [PMID: 38156784 PMCID: PMC10794876 DOI: 10.1210/endocr/bqad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/08/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Hyperandrogenism and polycystic ovarian syndrome result from the imbalance or increase of androgen levels in females. Androgen receptor (AR) mediates the effects of androgens, and this study examines whether neuronal AR plays a role in reproduction under normal and increased androgen conditions in female mice. The neuron-specific AR knockout (KO) mouse (SynARKO) was generated from a female mouse (synapsin promoter driven Cre) and a male mouse (Ar fl/y). Puberty onset and the levels of reproductive hormones such as LH, FSH, testosterone, and estradiol were comparable between the control and the SynARKO mice. There were no differences in cyclicity and fertility between the control and SynARKO mice, with similar impairment in both groups on DHT treatment. Neuronal AR KO, as in this SynARKO mouse model, did not alleviate the infertility associated with DHT treatment. These studies suggest that neuronal AR KO neither altered reproductive function under physiological androgen levels, nor restored fertility under hyperandrogenic conditions.
Collapse
Affiliation(s)
- Vaibhave Ubba
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Serene Joseph
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Olubusayo Awe
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Dustin Jones
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Milan K Dsilva
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Mingxiao Feng
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21087, USA
| | - Junjiang Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21087, USA
- Departments of Gastrointestinal Surgery and General Surgery, Guangdong Provincial People’s Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Xiaomin Fu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21087, USA
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Razeen J Akbar
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Brittany H Bodnar
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Ling Yang
- Department of Medical Genetics & Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, USA
| | - Bouchra Taib
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rexford Ahima
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sara Divall
- Department of Pediatrics, University of Washington, Seattle’s Children’s Hospital, Seattle, WA, 98145-5005, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21087, USA
| |
Collapse
|
4
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|