1
|
Grigoraș A, Amalinei C. The Role of Perirenal Adipose Tissue in Carcinogenesis-From Molecular Mechanism to Therapeutic Perspectives. Cancers (Basel) 2025; 17:1077. [PMID: 40227577 PMCID: PMC11987925 DOI: 10.3390/cancers17071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Perirenal adipose tissue (PRAT) exhibits particular morphological features, with its activity being mainly related to thermogenesis. However, an expanded PRAT area seems to play a significant role in cardiovascular diseases, diabetes mellitus, and chronic kidney disease pathogenesis. Numerous studies have demonstrated that PRAT may support cancer progression and invasion, mainly in obese patients. The mechanism underlying these processes is of dysregulation of PRAT's secretion of adipokines and pro-inflammatory cytokines, such as leptin, adiponectin, chemerin, apelin, omentin-1, vistatin, nesfatin-1, and other pro-inflammatory cytokines, modulated by tumor cells. Cancer cells may also induce a metabolic reprogramming of perirenal adipocytes, leading to increased lipids and lactate transfer to the tumor microenvironment, contributing to cancer growth in a hypoxic milieu. In addition, the PRAT browning process has been specifically detected in renal cell carcinoma (RCC), being characterized by upregulated expression of brown/beige adipocytes markers (UCP1, PPAR-ɣ, c/EBPα, and PGC1α) and downregulated white fat cells markers, such as LEPTIN, SHOX2, HOXC8, and HOXC9. Considering its multifaceted role in cancer, modulation of PRAT's role in tumor progression may open new directions for oncologic therapy improvement. Considering the increasing evidence of the relationship between PRAT and tumor cells, our review aims to provide a comprehensive analysis of the perirenal adipocytes' impact on tumor progression and metastasis.
Collapse
Affiliation(s)
- Adriana Grigoraș
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| |
Collapse
|
2
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Li T, Liang M, Luo J, Peng X. Metabolites of Clostridium leptum fermenting flaxseed polysaccharide alleviate obesity in rats. Int J Biol Macromol 2024; 264:129907. [PMID: 38325691 DOI: 10.1016/j.ijbiomac.2024.129907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Obesity is a chronic metabolic disease. Our previous research found flaxseed polysaccharide (FP) has an anti-obesity effect, and its anti-obesity effect possibly depends on Clostridium leptum (C. leptum). However, whether the strain takes the role and how it works is still being determined. Here, FP was fermented in vitro by C. leptum and its metabolites were analyzed. Subsequently, the FP fermentation broth of C. leptum (FPF) was given to the obese pseudo sterile rats. The results showed FPF was rich in various metabolites, among which the top ten in relative expression abundance were 3 beta-hydroxy-5-cholestenoate, 7,8-dihydro-3b,6a-dihydroxy-alpha-ionol 9-glucoside, Valyl-Serine, 2-amino-4-[(2-hydroxy-1-oxopropyl)amino]butanoic acid, Agavoside B, glycylproline, lycopersiconolide, armillaritin, Isoleucyl-Hydroxyproline and norethindrone acetate. After intervention with FPF, the weight, abdominal fat ratio, and total fat ratio of rats were significantly reduced and the lipid metabolism of them has been improved. This effect may be achieved by up regulating glucagon-like peptide-1 and adiponectin and further activating the AMP-activated protein kinase signaling pathway. This is the first experimental proof that FP exerts its anti-obesity effects through metabolites from C. leptum fermenting FP, not FP itself and the bacterial cells (debris) of C. leptum. It is also the first demonstration that FPF has a significant anti-obesity effect.
Collapse
Affiliation(s)
- Tianxing Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Minjian Liang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
4
|
Opstad TB, Papotti B, Åkra S, Hansen CH, Braathen B, Tønnessen T, Solheim S, Seljeflot I. Sirtuin1, not NAMPT, possesses anti-inflammatory effects in epicardial, pericardial and subcutaneous adipose tissue in patients with CHD. J Transl Med 2023; 21:644. [PMID: 37730614 PMCID: PMC10512577 DOI: 10.1186/s12967-023-04518-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Inflammation in cardiac adipose tissue (AT) is associated with atherosclerosis. We investigated whether the epicardial-, pericardial and pre-sternal subcutaneous AT (EAT, PAT and SAT) expression of Sirtuin1 (SIRT1) and nicotinamide phosphoribosyl transferase (NAMPT) are involved in the inflammatory process in coronary heart disease (CHD), and potentially associated to nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-related markers, macrophage polarization markers, cell markers and the cardiometabolic profile. METHODS In this cohort study performed between 2016 and 2018, EAT, PAT and SAT biopsies were retrieved from 52 CHD patients (77% men, median age 67) undergoing open-chest coronary artery bypass grafting (CABG), and 22 patients (50% men, median age 69) undergoing aortic valve replacement serving as controls. AT samples were snap-frozen at - 80 °C until RNA extraction and AT expression of actual markers, relatively quantified by PCR. Circulating SIRT1 and NAMPT were measured with Enzyme-linked immunosorbent assays (ELISAs). Non-parametric statistical tests were mainly used, including Friedman's test coupled to Wilcoxon signed-rank test and Spearman Correlation. RESULTS SIRT1 and NAMPT levels were similar in CHD and controls. In CHD, SIRT1 and NAMPT were inter-correlated in all AT compartments (r = 0.37-0.56, p < 0.01, all), and differently expressed between compartments, with the highest expression in SAT, significantly different from EAT (p < 0.01, both). Circulating SIRT1 and NAMPT levels were inversely associated (r = - 0.32, p = 0.024). In EAT and SAT, SIRT1 expression was inversely associated with IL-18 (r = - 0.43 and r = - 0.38, p < 0.01, both), whereas NAMPT expression was positively associated with the NLRP3 inflammasome-related markers in all compartments (r = 0.37-0.55, p < 0.01, all). While SIRT1 and NAMPT correlated to nitric oxide synthase 2 (NOS2), especially in SAT (r = 0.50-0.52, p ≤ 0.01, both), SIRT1 expression was related to endothelial cells, and NAMPT to macrophages. SIRT1 levels were correlated to weight and waist (r = 0.32 and r = 0.38, p < 0.03, both) and inversely to triglycerides and glycated haemoglobin (HbA1c) (r = - 0.33-- 0.37, p < 0.03, all), the latter positively correlated to NAMPT concentration (r = 0.39, p = 0.010). CONCLUSION The study indicates that targeting SIRT1, with its anti-inflammatory properties, may be a novel anti-inflammatory strategy in preventing atherosclerosis and CHD progression. NAMPT may be an early player in AT inflammation, mediating/reflecting a pro-inflammatory state. TRIAL REGISTRATION Registration: Clinicaltrials.gov ID: NCT02760914, registered the 5th of February 2016, http://clinicaltrials.gov/NCT02760914.
Collapse
Affiliation(s)
- Trine Baur Opstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University, Hospital Ullevål, Pb 4954 Nydalen, 240, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Sissel Åkra
- Center for Clinical Heart Research, Department of Cardiology, Oslo University, Hospital Ullevål, Pb 4954 Nydalen, 240, Oslo, Norway
| | - Charlotte Holst Hansen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University, Hospital Ullevål, Pb 4954 Nydalen, 240, Oslo, Norway
| | - Bjørn Braathen
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Theis Tønnessen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Svein Solheim
- Center for Clinical Heart Research, Department of Cardiology, Oslo University, Hospital Ullevål, Pb 4954 Nydalen, 240, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University, Hospital Ullevål, Pb 4954 Nydalen, 240, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
6
|
Chen DZ, Ganapathy A, Nayak Y, Mejias C, Bishop GL, Mellnick VM, Ballard DH. Analysis of Superficial Subcutaneous Fat Camper's and Scarpa's Fascia in a United States Cohort. J Cardiovasc Dev Dis 2023; 10:347. [PMID: 37623360 PMCID: PMC10455117 DOI: 10.3390/jcdd10080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Together, the Camper's and Scarpa's fasciae form the superficial fat layer of the abdominal wall. Though they have clinical and surgical relevance, little is known about their role in body composition across diverse patient populations. This study aimed to determine the relationship between patient characteristics, including sex and body mass index, and the distribution of Camper's and Scarpa's fascial layers in the abdominal wall. A total of 458 patients' abdominal CT examinations were segmented via CoreSlicer 1.0 to determine the surface area of each patient's Camper's, Scarpa's, and visceral fascia layers. The reproducibility of segmentation was corroborated by an inter-rater analysis of segmented data for 20 randomly chosen patients divided between three study investigators. Pearson correlation and Student's t-test analyses were performed to characterize the relationship between fascia distribution and demographic factors. The ratios of Camper's fascia, both as a proportion of superficial fat (r = -0.44 and p < 0.0001) and as a proportion of total body fat (r = -0.34 and p < 0.0001), showed statistically significant negative correlations with BMI. In contrast, the ratios of Scarpa's fascia, both as a proportion of superficial fat (r = 0.44 and p < 0.0001) and as a proportion of total body fat (r = 0.41 and p < 0.0001), exhibited statistically significant positive correlations with BMI. Between sexes, the females had a higher ratio of Scarpa's facia to total body fat compared to the males (36.9% vs. 31% and p < 0.0001). The ICC values for the visceral fat, Scarpa fascia, and Camper fascia were 0.995, 0.991, and 0.995, respectively, which were all within the 'almost perfect' range (ICC = 0.81-1.00). These findings contribute novel insights by revealing that as BMI increases the proportion of Camper's fascia decreases, while the ratio of Scarpa's fascia increases. Such insights expand the scope of body composition studies, which typically focus solely on superficial and visceral fat ratios.
Collapse
Affiliation(s)
- David Z. Chen
- School of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.Z.C.); (A.G.)
| | - Aravinda Ganapathy
- School of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.Z.C.); (A.G.)
| | - Yash Nayak
- School of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Christopher Mejias
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.M.); (G.L.B.); (V.M.M.)
| | - Grace L. Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.M.); (G.L.B.); (V.M.M.)
| | - Vincent M. Mellnick
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.M.); (G.L.B.); (V.M.M.)
| | - David H. Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.M.); (G.L.B.); (V.M.M.)
| |
Collapse
|
7
|
Zhao Z, Huang J, Zhong D, Wang Y, Che Z, Xu Y, Hong R, Qian Y, Meng Q, Yin J. Associations of three thermogenic adipokines with metabolic syndrome in obese and non-obese populations from the China plateau: the China Multi-Ethnic Cohort. BMJ Open 2023; 13:e066789. [PMID: 37491087 PMCID: PMC10373706 DOI: 10.1136/bmjopen-2022-066789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVES High altitude exposure decreases the incidence of obesity and metabolic syndrome, but increases the expression of the thermogenic adipokines (leptin, fat cell fatty acid-binding protein (A-FABP) and visfatin). This study investigated the correlation of these adipokines with obesity and metabolic syndrome (MetS) in populations residing in a plateau-specific environment. DESIGN Case-control study. SETTING We cross-sectionally analysed data from the China Multi-Ethnic Cohort. PARTICIPANTS A total of 475 obese (OB, body mass index (BMI)≥28.0 kg/m2) plateau Han people and 475 age, sex and region-matched non-obese (NO, 18.5≤BMI<24.0 kg/m2) subjects were recruited. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III guidelines. PRIMARY AND SECONDARY OUTCOME MEASURES Data with normal distributions were expressed as the mean (Stanard Deviation, SD), and data with skewed distributions were expressed as the median (Interquartile Range, IQR). The participants were grouped and the rank-sum test, χ2 test or t-tests was used for comparing groups. Spearman correlation coefficients were estimated to assess the relationships among leptin, A-FABP, visfatin and the components of MetS in each group. RESULTS A-FABP was an independent predictor of OB (OR, 1.207; 95% CI, 1.170 to 1.245; p<0.05), ABSI (OR, 1.035; 95%CI, 1.019 to 1.052; p<0.05) and MetS (OR, 1.035; 95% CI, 1.013 to 1.057; p<0.05). Leptin was an independent predictor of MetS in the NO group. Visfatin was an independent predictor of increased ABSI, but not for OB or MetS. CONCLUSION An abnormally elevated plasma A-FABP level, but not leptin or visfatin is a potential risk factor for MetS in high-altitude populations.
Collapse
Affiliation(s)
- Zhimin Zhao
- School of Public Health, Kunming Medical University, Kunming, China
| | - Juan Huang
- School of Public Health, Kunming Medical University, Kunming, China
- Ultrasonography Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dubo Zhong
- Yunnan Yunce Quality Inspection Limited Company, Kunming, China, Yunnan, Kunming, China
| | - Yanjiao Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Zhuohang Che
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yahui Xu
- School of Public Health, Kunming Medical University, Kunming, China
| | | | - Ying Qian
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiong Meng
- School of Public Health, Kunming Medical University, Kunming, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| |
Collapse
|
8
|
Wang CJ, Noble PB, Elliot JG, Choi YS, James AL, Wang KCW. Distribution, composition, and activity of airway-associated adipose tissue in the porcine lung. Am J Physiol Lung Cell Mol Physiol 2023; 324:L179-L189. [PMID: 36445102 DOI: 10.1152/ajplung.00288.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Patients with comorbid asthma-obesity experience greater disease severity and are less responsive to therapy. We have previously reported adipose tissue within the airway wall that positively correlated with body mass index. Accumulation of biologically active adipose tissue may result in the local release of adipokines and disrupt large and small airway function depending on its anatomical distribution. This study therefore characterized airway-associated adipose tissue distribution, lipid composition, and adipokine activity in a porcine model. Airway segments were systematically dissected from different locations of the bronchial tree in inflation-fixed lungs. Cryosections were stained with hematoxylin and eosin (H&E) for airway morphology, oil red O to distinguish adipose tissue, and Nile blue A for lipid subtype delineation. Excised airway-associated adipose tissue was cultured for 72 h to quantify adipokine release using immunoassays. Results showed that airway-associated adipose tissue extended throughout the bronchial tree and occupied an area proportionally similar to airway smooth muscle within the wall area. Lipid composition consisted of pure neutral lipids (61.7 ± 3.5%), a mixture of neutral and acidic lipids (36.3 ± 3.4%), or pure acidic lipids (2.0 ± 0.8%). Following tissue culture, there was rapid release of IFN-γ, IL-1β, and TNF-α at 12 h. Maximum IL-4 and IL-10 release was at 24 and 48 h, and peak leptin release occurred between 48 and 72 h. These data extend previous findings and demonstrate that airway-associated adipose tissue is prevalent and biologically active within the bronchial tree, providing a local source of adipokines that may be a contributing factor in airway disease.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
9
|
Khan M, Khan M, Ahmad M, Alam R, Khan S, Jaiswal G. Association of circulatory adiponectin with the parameters of Madras Diabetes Research Foundation-Indian Diabetes Risk Score. JOURNAL OF DIABETOLOGY 2022. [DOI: 10.4103/jod.jod_86_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|