1
|
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, Entezari M, Hashemi M, Wan R. Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother 2024; 177:116954. [PMID: 38906027 DOI: 10.1016/j.biopha.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-β, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.
Collapse
Affiliation(s)
- Morteza Nakhaei Amroodi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shayan Amiri
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parnaz Mohseni
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Pourmarjani
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behdokht Jamali
- Department of microbiology and genetics, kherad Institute of higher education, Busheher, lran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Tabrizian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Lu Y, Tian Y, Liu J, Wang Y, Wang X. A De novo Mutation in the COL1A1 Gene Leading to Severe Osteogenesis Imperfecta: Case Report and Review of the Literature. AJP Rep 2024; 14:e215-e223. [PMID: 39268228 PMCID: PMC11392588 DOI: 10.1055/a-2388-3190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/04/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Osteogenesis imperfecta (OI) is the most common monogenic inherited skeletal dysplasia disorder. Mutations in the COL1A1/COL1A2 gene cause ∼85 to 90% of OI. Studies of cases have demonstrated that missense mutations are the primary cause of OI, with poor prognosis. Case Description We report the case of a fetus with skeletal abnormalities and subcutaneous edema. Ultrasound imaging revealed suspected skeletal malformations, including hypoplastic long bones of all four limbs, poorly ossified calvarium, unrevealing nasal bones, and generalized subcutaneous edema. Whole-exome sequencing revealed a heterozygous mutation in COL1A1 (c.2174G > T/p.(G725V), NM_000088.3). According to the American College of Medical Genetics and Genomics guidelines, it was determined to be a pathogenic variant and identified as a de novo variant (PS2 + PP3_strong + PM2_supporting), which has not been reported in the HGMD, gnomAD, ClinVar, or other databases. This variation causes a glycine-to-valine substitution at position 725, located within the Gly-Xaa-Yaa repeat in the helical domain of the collagen molecule. Conclusion The COL1A1 mutation (c.2174G > T/p.(G725V), NM_000088.3) is a novel pathogenic variant of severe OI. Our study expanded the OI COL1A1 gene variation profiles in the Chinese population and provided a theoretical foundation for prenatal diagnosis, genetic counseling, and obstetric management.
Collapse
Affiliation(s)
- Yurong Lu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yijia Tian
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jinxiu Liu
- Testing Center, Yinfeng Medical Laboratory, Jinan, Shandong, People's Republic of China
| | - Yifan Wang
- Testing Center, Yinfeng Medical Laboratory, Jinan, Shandong, People's Republic of China
| | - Xietong Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Qingdao University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
3
|
Wang S, Li M, Liu P, Dong Y, Geng R, Zheng T, Zheng Q, Li B, Ma P. Col1a1 mediates the focal adhesion pathway affecting hearing in miR-29a mouse model by RNA-seq analysis. Exp Gerontol 2024; 185:112349. [PMID: 38103809 DOI: 10.1016/j.exger.2023.112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Age-related hearing loss (ARHL) is a common neurodegenerative disease. Its molecular mechanisms have not been fully elucidated. In the present study, we obtained differential mRNA expression in the cochlea of 2-month-old miR-29a+/+ mice and miR-29a-/- mice by RNA-seq. Gene ontology (GO) analysis was used to identify molecular functions associated with hearing in miR-29a-/- mice, including being actin binding (GO: 0003779) and immune processes. We focused on the intersection of differential genes, miR-29a target genes and the sensory perception of sound (GO:0007605) genes, with six mRNA at this intersection, and we selected Col1a1 as our target gene. We validated Col1a1 as the direct target of miR-29a by molecular and cellular experiments. Total 6 pathways involved in Col1a1 were identified by through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We selected the focal adhesion pathway as our target pathway based. Their expression levels in miR-29a-/- mice were verified by qRT-PCR and Western blot. Compared with miR-29a+/+ mice, the expression levels of Col1a1, Itga4, Itga2, Itgb3, Itgb7, Pik3r3 and Ptk2 were different in miR-29a-/- mice. Immunofluorescence was used to locate genes in the cochlea. Col1a1, Itga4 and Itgb3 were differentially expressed in the basilar membranes and stria vascularis and spiral ganglion neurons compared to miR-29a+/+ mice. Pik3r3 and Ptk2 were differentially expressed in the basilar membranes and stria vascularis, but not at the s spiral ganglion neurons compared to miR-29a+/+ mice. Our results show that when miR-29a is knocked out, the Col1a1 mediates the focal adhesion pathway may affect the hearing of miR-29a-/- mice. These findings may provide a new direction for effective treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Shuli Wang
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Pengcheng Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China.
| | - Peng Ma
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China; School of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
4
|
Zhivodernikov IV, Kirichenko TV, Markina YV, Postnov AY, Markin AM. Molecular and Cellular Mechanisms of Osteoporosis. Int J Mol Sci 2023; 24:15772. [PMID: 37958752 PMCID: PMC10648156 DOI: 10.3390/ijms242115772] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Osteoporosis is a widespread systemic disease characterized by a decrease in bone mass and an imbalance of the microarchitecture of bone tissue. Experimental and clinical studies devoted to investigating the main pathogenetic mechanisms of osteoporosis revealed the important role of estrogen deficiency, inflammation, oxidative stress, cellular senescence, and epigenetic factors in the development of bone resorption due to osteoclastogenesis, and decreased mineralization of bone tissue and bone formation due to reduced function of osteoblasts caused by apoptosis and age-depended differentiation of osteoblast precursors into adipocytes. The current review was conducted to describe the basic mechanisms of the development of osteoporosis at molecular and cellular levels and to elucidate the most promising therapeutic strategies of pathogenetic therapy of osteoporosis based on articles cited in PubMed up to September 2023.
Collapse
Affiliation(s)
| | | | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia; (I.V.Z.); (T.V.K.); (A.Y.P.); (A.M.M.)
| | | | | |
Collapse
|
5
|
Chen X, Du Y, Luo S, Qu Y, Jin W, Liu S, Wang Z, Liu X, Feng Z, Qin B, Zhou L. Physiological and Transcriptomic Analyses Reveal the Effects of Carbon-Ion Beam on Taraxacum kok-saghyz Rodin Adventitious Buds. Int J Mol Sci 2023; 24:ijms24119287. [PMID: 37298239 DOI: 10.3390/ijms24119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/23/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Taraxacum kok-saghyz Rodin (TKS) has great potential as an alternative natural-rubber (NR)-producing crop. The germplasm innovation of TKS still faces great challenges due to its self-incompatibility. Carbon-ion beam (CIB) irradiation is a powerful and non-species-specific physical method for mutation creation. Thus far, the CIB has not been utilized in TKS. To better inform future mutation breeding for TKS by the CIB and provide a basis for dose-selection, adventitious buds, which not only can avoid high levels of heterozygosity, but also further improve breeding efficiency, were irradiated here, and the dynamic changes of the growth and physiologic parameters, as well as gene expression pattern were profiled, comprehensively. The results showed that the CIB (5-40 Gy) caused significant biological effects on TKS, exhibiting inhibitory effects on the fresh weight and the number of regenerated buds and roots. Then,15 Gy was chosen for further study after comprehensive consideration. CIB-15 Gy resulted in significant oxidative damages (hydroxyl radical (OH•) generation activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and malondialdehyde (MDA) content) and activated the antioxidant system (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)) of TKS. Based on RNA-seq analysis, the number of differentially expressed genes (DEGs) peaked at 2 h after CIB irradiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DNA-replication-/repair- (mainly up-regulated), cell-death- (mainly up-regulated), plant-hormone- (auxin and cytokinin, which are related to plant morphogenesis, were mainly down-regulated), and photosynthesis- (mainly down-regulated) related pathways were involved in the response to the CIB. Furthermore, CIB irradiation can also up-regulate the genes involved in NR metabolism, which provides an alternative strategy to elevate the NR production in TKS in the future. These findings are helpful to understand the radiation response mechanism and further guide the future mutation breeding for TKS by the CIB.
Collapse
Affiliation(s)
- Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanwei Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ying Qu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Jin
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shizhong Liu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Zhuanzi Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi Qin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
7
|
Does the c.-14C>T Mutation in the IFITM5 Gene Provide Identical Phenotypes for Osteogenesis Imperfecta Type V? Data from Russia and a Literature Review. Biomedicines 2022; 10:biomedicines10102363. [PMID: 36289625 PMCID: PMC9598403 DOI: 10.3390/biomedicines10102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a large group of genetically heterogeneous diseases resulting from decreased bone density and an abnormal microarchitecture, which are clinically manifested by abnormal bone fractures. A distinctive clinical feature of this group of diseases is the presence of spontaneous fractures and skeletal deformities. However, the clinical manifestations of different types of OI are characterized by marked polymorphism with variable severity of skeletal and extra-skeletal features. Previous studies have shown that a mutation (c.-14C>T) in the IFITM5 gene is responsible for autosomal dominant OI type V. However, the mutation has a variable expression pattern and marked clinical heterogeneity. In this study, a clinical and genetic analysis of 12 cases with molecularly confirmed OI type V from 12 unrelated families was performed. Significant clinical heterogeneity of the disease with the same molecular defect was detected. In six subjects (50%), there were no classic signs of OI type V (formation of a hyperplastic bone callus, calcification of the interosseous membrane and dislocation of the radial head). In all cases, the mutation occurred de novo.
Collapse
|