1
|
Liu Q, Yao F, Wu L, Xu T, Na J, Shen Z, Liu X, Shi W, Zhao Y, Liao Y. Heterogeneity and interplay: the multifaceted role of cancer-associated fibroblasts in the tumor and therapeutic strategies. Clin Transl Oncol 2024; 26:2395-2417. [PMID: 38602644 DOI: 10.1007/s12094-024-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Fei Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Tianyuan Xu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Department of Oncology, The First Affiliated Tumor Hospital, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Dlamini Z, Ladomery MR, Kahraman A. Editorial: The RNA revolution and cancer. Front Endocrinol (Lausanne) 2024; 15:1422599. [PMID: 38832352 PMCID: PMC11144892 DOI: 10.3389/fendo.2024.1422599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
RNA biology has revolutionized cancer understanding and treatment, especially in endocrine-related malignancies. This editorial highlights RNA's crucial role in cancer progression, emphasizing its influence on tumor heterogeneity and behavior. Processes like alternative splicing and noncoding RNA regulation shape cancer biology, with microRNAs, long noncoding RNAs, and circular RNAs orchestrating gene expression dynamics. Aberrant RNA signatures hold promise as diagnostic and prognostic biomarkers in endocrine-related cancers. Recent findings, such as aberrant PI3Kδ splice isoforms and epithelial-mesenchymal transition-related lncRNA signatures, unveil potential therapeutic targets for personalized treatments. Insights into m6A-associated lncRNA prognostic models and the function of lncRNA LINC00659 in gastric cancer represents ongoing research in this field. As understanding of RNA's role in cancer expands, personalized therapies offer transformative potential in managing endocrine-related malignancies. This signifies a significant stride towards precision oncology, fostering innovation for more effective cancer care.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), University of Pretoria, Pretoria, South Africa
| | - Michael R. Ladomery
- School of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Abdullah Kahraman
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
3
|
Ma X, Xu L, Gong S, Wu N, Guo J, Feng X, Zhao M, Qiu S, Sun M, Zhang C, Zhang X, Ren Z, Zhang P. hsa_circ_0007919 promotes pancreatic cancer metastasis by modulating Sp1-mediated THBS1 transcription. FASEB J 2024; 38:e23591. [PMID: 38572579 DOI: 10.1096/fj.202302422rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
CircRNAs are abnormally expressed in various cancers and play an important role in the occurrence and development of cancers. However, their biological functions and the underlying molecular mechanisms in pancreatic cancer (PC) metastasis are incompletely understood. Differentially expressed circRNAs were identified by second-generation transcriptome sequencing in three pairs of PC tissues and adjacent tissues. The expression and prognostic significance of hsa_circ_0007919 were evaluated by qRT-PCR and Kaplan-Meier survival curves. Gain- and loss-of-function assays were conducted to detect the role of hsa_circ_0007919 in PC metastasis in vitro. A lung metastasis model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor metastasis in vivo. Mechanistically, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to explore the interplay among hsa_circ_0007919, Sp1, and the THBS1 promoter. hsa_circ_0007919 was significantly upregulated in PC tissues and cells and was correlated with lymph node metastasis, TNM stage, and poor prognosis. Knockdown of hsa_circ_0007919 significantly suppressed the migration and invasion of PC cells in vitro and inhibited tumor metastasis in vivo. However, overexpression of hsa_circ_0007919 exerted the opposite effects. Mechanistically, hsa_circ_0007919 could recruit the transcription factor Sp1 to inhibit THBS1 transcription, thereby facilitating PC metastasis. hsa_circ_0007919 can promote the metastasis of PC by inhibiting THBS1 expression. hsa_circ_0007919 may be a potential therapeutic target in PC.
Collapse
Affiliation(s)
- Xiao Ma
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, Xuzhou First People's Hospital, Xuzhou, China
| | - Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuai Gong
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nai Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiaxuan Guo
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xinyu Feng
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Mengmeng Zhao
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Sancheng Qiu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Ming Sun
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuzhong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Pengbo Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Zhuang X, Li M, Xu D, Lin S, Yang Z, Xu T, Yin J. Comprehensive analysis of pain genes in prognosis of kidney renal clear cell carcinoma and tumor immunotherapy: A comprehensive bioinformatic study. Health Sci Rep 2024; 7:e1884. [PMID: 38352696 PMCID: PMC10862147 DOI: 10.1002/hsr2.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/09/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Background The effect of pain genes (NAV1, EHMT2, SP1, SLC6A4, COMT, OPRM1, OPRD1, CYP2D6, and CYP3A4) have not been reported previously in kidney renal clear cell carcinoma (KIRC) patients and thus we made a comprehensive analysis of pain genes in the prognosis of KIRC and tumor immunotherapy. Methods In this study, TCGA, Kaplan-Meier plotter, Metascape, STRING, Human Protein Atlas, Single Cell Expression Atlas database, LinkedOmics, cBioPortal, MethSurv, CancerSEA, COSMIC database and R package (ggplot2, version 3.3.3) were used for comprehensive analysis of pain genes in KIRC. Pearson and Spearman correlation coefficients were for co-expression analysis. Immunotherapy and TISIDB database were used for tumor Immunotherapy. Results Representative pain genes (SP1, SLC6A4, COMT, OPRD1, CYP2D6, and CYP3A4) were statistically significant (p < 0.0001) in the prognosis of KIRC. Immunotherapy (anti-PD-1 therapy, anti-PD-L1 therapy, and anti-CTLA4 therapy) and immunomodulator (immunoinhibitor, immunostimulator, and MHC molecule) in KIRC were significant associated with pain genes (SP1, SLC6A4, COMT, OPRD1, CYP2D6, and CYP3A4), which were the important addition to clinical decision making for patients. Conclusions Our study uncovered a mechanism for the effect of pain genes on KIRC outcome via the modulation of associated co-expression gene networks, gene variation, and tumor Immunotherapy.
Collapse
Affiliation(s)
- Xiao‐Yu Zhuang
- Department of AnesthesiologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Ming Li
- Department of UrologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Da‐Ming Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shu‐Bin Lin
- Department of UrologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Zheng‐Liang Yang
- Department of UrologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Teng‐Yu Xu
- Department of UrologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Jun Yin
- Department of Clinical Laboratory MedicineSecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| |
Collapse
|
5
|
Xu S, Liu Z, Luo Q, Chang L, Ding J, Xiao Y, Zhang Y, Zhou G, Wang K. Long non-coding RNA linc00659 promotes tumour progression by regulating FZD6/Wnt/β-catenin signalling pathway in colorectal cancer via m6A reader IGF2BP1. J Gene Med 2024; 26:e3636. [PMID: 38009760 DOI: 10.1002/jgm.3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Abnormal N6-methyladenosine (m6A) modification has become a driving factor in tumour development and progression. The linc00659 is abnormally highly expressed in digestive tract tumours and promotes cancer progression, but there is little research on the mechanism of linc00659 and m6A. METHODS The expression of linc00659 in colorectal cancer (CRC) tissues and cells was assessed by a quantitative real-time PCR. The proliferative capacity of CRC cells was determined by colony formation, Cell Counting Kit-8 and 5-ethynyl-2 deoxyuridine assays, and the migratory capacity of CRC was determined by wound healing and transwell assays and tube formation. In vivo, a xenograft tumour model was used to detect the effect of linc00659 on tumour growth. The Wnt/β-catenin signalling pathway and related protein expression levels were measured by western blotting. The binding of linc00659 to insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was assessed by RNA pull-down and an immunoprecipitation assay. The effect of IGF2BP1 on FZD6 was detected by an RNA stability assay. RESULTS The expression of linc00659 was abnormally elevated in CRC tissues and cells compared to normal colonic tissues and cells. We confirm that linc00659 promotes the growth of CRC cells both in vivo and in vitro. Mechanistically, linc00659 binds to IGF2BP1 and specifically enhances its activity to stabilize the target gene FZD6. Therefore, linc00659 and IGF2BP1 activate the Wnt/β-catenin signalling pathway, promoting cell proliferation in CRC. CONCLUSIONS Our results show that linc00659 and IGF2BP1 cooperate to promote the stability of the target FZD6 mRNA, thereby facilitating CRC progression, which may represent a potential diagnostic, prognostic and therapeutic target for CRC.
Collapse
Affiliation(s)
- Shufen Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zichun Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Luo
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lisha Chang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanan Xiao
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Zhang
- Department of General Medical, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Keming Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Li F, Xian D, Huang J, Nie L, Xie T, Sun Q, Zhang X, Zhou Y. SP1-Induced Upregulation of LncRNA AFAP1-AS1 Promotes Tumor Progression in Triple-Negative Breast Cancer by Regulating mTOR Pathway. Int J Mol Sci 2023; 24:13401. [PMID: 37686205 PMCID: PMC10563082 DOI: 10.3390/ijms241713401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The long non-coding RNA (lncRNA) actin fiber-associated protein-1 antisense RNA 1 (AFAP1-AS1) exerted oncogenic activity in triple-negative breast cancer (TNBC). We designed this study and conducted it to investigate the upstream regulation mechanism of AFAP1-AS1 in TNBC tumorigenesis. In this work, we proved the localization of AFAP1-AS1 in the cytoplasm. We elucidated the mechanism by which the transcription factor specificity protein 1 (SP1) modulated AFAP1-AS1 in TNBC progression, which has yet to be thoroughly studied. Dual luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay revealed a strong affinity of SP1 toward the promoter regions P3 of AFAP1-AS1, proving the gene expression regulation of AFAP1-AS1 via SP1 in TNBC. Additionally, SP1 could facilitate the tumorigenesis of TNBC cells in vitro and in vivo by regulating the AFAP1-AS1 expression. Furthermore, silenced AFAP1-AS1 suppressed the expression of genes in the mTOR pathway, such as eukaryotic translation initiation factor 4B (EIF4B), mitogen-activated protein kinase-associated protein 1 (MAPKAP1), SEH1-like nucleoporin (SEH1L), serum/glucocorticoid regulated kinase 1 (SGK1), and its target NEDD4-like E3 ubiquitin protein ligase (NEDD4L), and promoted the gene expression of s-phase kinase-associated protein 2 (SKP2). Overall, this study emphasized the oncogenic role of SP1 and AFAP1-AS1 in TNBC and illustrated the AFAP1-AS1 upstream interaction with SP1 and the downstream modulatory of mTOR signaling, thus offering insights into the tumorigenesis mechanism in TNBC.
Collapse
Affiliation(s)
- Fangyuan Li
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Daheng Xian
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Junying Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Longzhu Nie
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Ting Xie
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| |
Collapse
|
7
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
8
|
Marques IS, Tavares V, Neto BV, Mota INR, Pereira D, Medeiros R. Long Non-Coding RNAs in Venous Thromboembolism: Where Do We Stand? Int J Mol Sci 2023; 24:12103. [PMID: 37569483 PMCID: PMC10418965 DOI: 10.3390/ijms241512103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Venous thromboembolism (VTE), a common condition in Western countries, is a cardiovascular disorder that arises due to haemostatic irregularities, which lead to thrombus generation inside veins. Even with successful treatment, the resulting disease spectrum of complications considerably affects the patient's quality of life, potentially leading to death. Cumulative data indicate that long non-coding RNAs (lncRNAs) may have a role in VTE pathogenesis. However, the clinical usefulness of these RNAs as biomarkers and potential therapeutic targets for VTE management is yet unclear. Thus, this article reviewed the emerging evidence on lncRNAs associated with VTE and with the activity of the coagulation system, which has a central role in disease pathogenesis. Until now, ten lncRNAs have been implicated in VTE pathogenesis, among which MALAT1 is the one with more evidence. Meanwhile, five lncRNAs have been reported to affect the expression of TFPI2, an important anticoagulant protein, but none with a described role in VTE development. More investigation in this field is needed as lncRNAs may help dissect VTE pathways, aiding in disease prediction, prevention and treatment.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Inês N. R. Mota
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| |
Collapse
|
9
|
Chen B, Xu X, Wu W, Zheng K, Yu Y. LINC00659 Inhibits Hepatocellular Carcinoma Malignant Progression by Blocking Aerobic Glycolysis through FUS Recruitment and SLC10A1 Modulation. Anal Cell Pathol (Amst) 2023; 2023:5852963. [PMID: 37234237 PMCID: PMC10208759 DOI: 10.1155/2023/5852963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/04/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant type of liver cancer that poses severe threat to human health worldwide. Aerobic glycolysis is a hallmark of HCC and facilitates its progression. Solute carrier family 10 member 1 (SLC10A1) and long intergenic non-protein coding RNA 659 (LINC00659) were detected to be downregulated in HCC cells, yet their potential functions underlying HCC progression remained unidentified. In the current work, colony formation and transwell assays were used to detect HCC cells (HepG2 and HuH-7) proliferation and migration in vitro study. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays were used for gene/protein expression determination. Seahorse assay was performed for aerobic glycolysis assessment. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted for detection of the molecular interaction between LINC00659 and SLC10A1. The results showed that overexpressed SLC10A1 significantly suppressed the proliferation, migration, and aerobic glycolysis in HCC cells. Mechanical experiments further demonstrated that LINC00659 positively regulated SLC10A1 expression in HCC cells by recruiting fused protein in sarcoma (FUS). Our work elucidated that LINC00659 inhibited HCC progression and aerobic glycolysis via the FUS/SLC10A1 axis, revealing a novel lncRNA-RNA-binding protein-mRNA network in HCC, which might provide potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Bin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Xin Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Wei Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Ke Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Yijun Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| |
Collapse
|
10
|
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|