1
|
Yin E, Satou M, Tateno T. Targeting Autophagy for Pituitary Tumors. Cancers (Basel) 2025; 17:1402. [PMID: 40361329 PMCID: PMC12070981 DOI: 10.3390/cancers17091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Pituitary tumors, arising from the pituitary gland, can be classified as functioning or non-functioning based on their hormone production. Previous studies demonstrated that impairment of cellular processes, such as autophagy, a crucial cellular recycling mechanism, has been implicated in pituitary tumorigenesis and hormone dysregulation. This review comprehensively examines the intricate relationship between autophagy and pituitary tumors. We explore the multifaceted role of autophagy in cancer, highlighting its dual nature as both a tumor suppressor and a promoter depending on the context. We also discuss the specific mechanisms of autophagy, including macroautophagy, mitophagy, crinophagy, and their relevance to pituitary tumorigenesis and hormone regulation. Furthermore, we analyze the current literature regarding the impact of various therapeutic interventions in pituitary tumor cells, with both autophagy-promoting and autophagy-inhibiting strategies. We address the challenges in interpreting autophagy activity and its complex interplay with hormone production. Current evidence suggests the potential of targeting autophagy as a therapeutic approach for pituitary tumors, emphasizing further research and clinical trials to determine the optimal strategy for individual patients and improve long-term outcomes.
Collapse
Affiliation(s)
- Evan Yin
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Motoyasu Satou
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| |
Collapse
|
2
|
Lin S, Dai Y, Han C, Han T, Zhao L, Wu R, Liu J, Zhang B, Huang N, Liu Y, Lai S, Shi J, Wang Y, Lou M, Xie J, Cheng Y, Tang H, Yao H, Fang H, Zhang Y, Wu X, Shen L, Ye Y, Xue L, Wu ZB. Single-cell transcriptomics reveal distinct immune-infiltrating phenotypes and macrophage-tumor interaction axes among different lineages of pituitary neuroendocrine tumors. Genome Med 2024; 16:60. [PMID: 38658971 PMCID: PMC11040908 DOI: 10.1186/s13073-024-01325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.
Collapse
Affiliation(s)
- Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changxi Han
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Han
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linfeng Zhao
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renyan Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyue Liu
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujing Lai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jintong Shi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Cheng
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Wu
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Youqiong Ye
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Cheng Y, Dai Y, Tang H, Lu X, Xie J, Xie W, Zhang Q, Liu Y, Lin S, Yao H, Shang H, Yang K, Liu H, Wu X, Zhang J, Zhang X, Xue L, Wu ZB. Therapeutic potential of targeting Nrf2 by panobinostat in pituitary neuroendocrine tumors. Acta Neuropathol Commun 2024; 12:61. [PMID: 38637883 PMCID: PMC11025224 DOI: 10.1186/s40478-024-01775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Xingyu Lu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqun Xie
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Hanbing Shang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Kun Yang
- Department of Neurosurgery, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xuefeng Wu
- Center for Immune-Related DiseasesShanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianming Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Zhang
- Neuroendocrine Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China.
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Stumpf MAM, Pinheiro FMM, Silva GO, Cescato VAS, Musolino NRC, Cunha-Neto MBC, Glezer A. How to manage intolerance to dopamine agonist in patients with prolactinoma. Pituitary 2023:10.1007/s11102-023-01313-8. [PMID: 37027090 DOI: 10.1007/s11102-023-01313-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE Dopamine agonists (DA) are the gold-standard for prolactinoma and hyperprolactinemia treatment. Intolerance to DA leading to drug drop out occurs in 3 to 12% of cases. We provide here a review of published data about DA intolerance and present a case report concerning the use of intravaginal cabergoline. METHODS We review the literature on the definition, the pathogenesis, frequency and management of DA intolerance. In addition, the review provides strategies to enhance tolerability and avoid precocious clinical treatment withdrawal. RESULTS Cabergoline is often cited as the most tolerable DA and its side effects tend to ameliorate within days to weeks. Restarting the same drug at a lower dose or switching to another DA can be used in cases of intolerance. The vaginal route can be tried specifically if there are gastrointestinal side effects in the oral administration. Symptomatic treatment could be attempted, although mainly based on a strategy used in other diseases. CONCLUSIONS Due to limited data, no guidelines have been developed for the management of intolerance in DA treatment. The most frequent management is to perform transsphenoidal surgery. Nevertheless, this manuscript provides data derived from published literature and expert opinion, suggesting new approaches to this clinical issue.
Collapse
Affiliation(s)
- Matheo Augusto Morandi Stumpf
- Unidade de Neuroendocrinologia, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, 05403- 010, SP, Brazil.
| | - Felipe Moura Maia Pinheiro
- Unidade de Neuroendocrinologia, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, 05403- 010, SP, Brazil
| | - Gilberto Ochman Silva
- Grupo de Neuroendocrinologia, Divisão de Neurocirurgia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Valter Angelo Sperling Cescato
- Grupo de Neuroendocrinologia, Divisão de Neurocirurgia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Nina Rosa Castro Musolino
- Grupo de Neuroendocrinologia, Divisão de Neurocirurgia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Malebranche Berardo Carneiro Cunha-Neto
- Grupo de Neuroendocrinologia, Divisão de Neurocirurgia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Andrea Glezer
- Unidade de Neuroendocrinologia, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, 05403- 010, SP, Brazil
| |
Collapse
|