1
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2025; 22:294-312. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
2
|
Gill K, Fraczek M, Kurpisz M, Piasecka M. Influence of Body Mass Index (BMI) and Waist-Hip Ratio (WHR) on Selected Semen Parameters. Int J Mol Sci 2025; 26:4089. [PMID: 40362327 PMCID: PMC12072140 DOI: 10.3390/ijms26094089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Because male obesity may result in reproductive failure, we aimed to examine the possible links among body mass index (BMI), the waist-hip ratio (WHR), and basic semen parameters, the oxidation-reduction potential of semen, the total antioxidant capacity of seminal plasma, the ability of sperm to bind hyaluronic acid, and sperm DNA fragmentation (SDF). This study was performed on semen (n = 543) collected from volunteers classified as follows: normal weight (BMI 18.5-24.9 kg/m2), overweight (BMI 25.0-29.9 kg/m2), obese (BMI ≥ 30.0 kg/m2), with a normal WHR (<1) or abnormal WHR (≥1). No significant differences in standard semen parameters were found between men with a normal BMI and those with overweight/obesity. However, compared with overweight men, obese men had a higher SDF index prevalence and risk for an SDF index > 20%. Compared with men with WHR < 1, those with WHR ≥ 1 had significantly lower sperm motility, morphology, and vitality and an increased SDF index, prevalence and risk for an SDF index > 20%. In conclusion, abnormal WHR had a greater negative impact on conventional semen parameters than abnormal BMI. Both BMI ≥ 30.0 and WHR ≥ 1 negatively influenced sperm chromatin integrity only. Obesity is a potential risk factor for sperm DNA damage.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (M.F.); (M.K.)
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (M.F.); (M.K.)
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| |
Collapse
|
4
|
Liu XY, Deng YL, Chen PP, Liu C, Miao Y, Zhang M, Cui FP, Zeng JY, Wu Y, Li CR, Liu CJ, Zeng Q. Self-Rated Health and Semen Quality in Men Undergoing Assisted Reproductive Technology. JAMA Netw Open 2024; 7:e2353877. [PMID: 38289600 PMCID: PMC10828918 DOI: 10.1001/jamanetworkopen.2023.53877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 02/01/2024] Open
Abstract
Importance Numerous studies have documented the association of self-rated health (SRH) with chronic diseases. However, few studies have investigated its association with semen quality. Objective To examine the association of SRH with semen quality among men undergoing assisted reproductive technology (ART) in China. Design, Setting, and Participants This cross-sectional study recruited male partners in couples undergoing ART treatment at the Center for Reproductive Medicine, Tongji Hospital, Wuhan, China. A total of 1262 men underwent 2 semen examinations and completed a questionnaire on SRH between December 2018 and January 2020. Data analysis was performed from November 20, 2022, to March 24, 2023. Exposure SRH, including overall physical and mental health, as well as reproductive-related physical and mental health specifically, were reported at baseline recruitment. Main Outcomes and Measures Sperm concentration, sperm progressive motility, sperm motility, and sperm count as semen quality parameters. Results The study included 1262 men with a mean (SD) age of 32.79 (5.25) years and body mass index of 24.37 (3.68). Men with poorer SRH had lower semen quality (eg, sperm concentration among poor vs very good overall physical health: percentage variation, -14.67%; 95% CI, -23.62% to -4.66%). Among 4 components of SRH, a greater reduction in semen quality was estimated for reproductive-related SRH compared with overall SRH, whereas the greatest reduction was observed for reproductive-related physical SRH. In comparison with men with very good reproductive-related physical SRH, men with poor reproductive-related physical SRH had differences of -24.78% (95% CI, -32.71% to -15.93%) and -25.61% (95% CI, -33.95% to -16.22%) in sperm count and concentration, respectively, and regression coefficients of -9.38 (95% CI, -12.01 to -6.76) and -9.24 (95% CI, -11.82 to -6.66) for sperm motility and sperm progressive motility, respectively. Conclusions and Relevance In this cross-sectional study of Chinese men, poorer SRH was associated with lower semen quality, and reproductive-related physical SRH was the most pronounced indicator. Our findings suggest that SRH, especially reproductive-related physical SRH, was a good indicator of semen quality, which should inform public and clinical regulatory decisions.
Collapse
Affiliation(s)
- Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China
| |
Collapse
|
6
|
Song X, Hong X, Wang Z, Lu F, Song C, Wang X, Zhan X, Yu J, Zhai J, Li J, Xiang X, Xuan X. Association between mitochondrial DNA genotype and sperm motility in humans. Mitochondrial DNA A DNA Mapp Seq Anal 2023; 34:41-48. [PMID: 38913411 DOI: 10.1080/24701394.2024.2361609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
The relationship between genetic alterations in mitochondrial DNA (mtDNA) and progressive motility (PR) and rapid progressive motility (grade A) of ejaculated human spermatozoa remains unclear. In this study, we explored the association between human mtDNA genotype and sperm PR and grade A by analyzing mtDNA copy number, loci, haplogroup, rearrangement, deletions, and duplications and sperm motility parameters. Human sperm mtDNA copy number, loci and haplogroups were not associated with human sperm motility PR or A grade. However, the cumulative frequency of human sperm mtDNA rearrangements (including deletions and duplications) in participants with high PR and grade A ratio was higher than in participants with low PR and grade A ratio. Additional studies are needed to understand the relationship between mtDNA genotypes, including deletions and duplications, and human sperm motility.
Collapse
Affiliation(s)
- Xueyou Song
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zilong Wang
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fuding Lu
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Changze Song
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinkun Wang
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoyong Zhan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiawen Zhai
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xujun Xuan
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|