1
|
Zhang Y, Yang K, Bai J, Chen J, Ou Q, Zhou W, Li X, Hu C. Single-cell transcriptomics reveals the multidimensional dynamic heterogeneity from primary to metastatic gastric cancer. iScience 2025; 28:111843. [PMID: 39967875 PMCID: PMC11834116 DOI: 10.1016/j.isci.2025.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025] Open
Abstract
Reprogramming of the tumor microenvironment (TME) plays a critical role in gastric cancer (GC) progression and metastasis. However, the multidimensional features between primary tumors and organ-specific metastases remain poorly understood. In this study, we characterized the dynamic heterogeneity of GC from primary to metastatic stages. We identified seven major cell types and 27 immune and stromal subsets. Immune cells decreased, while immunosuppressive cells increased in ovarian and peritoneal metastases. A 30-gene signature for ovarian metastasis was validated in GC cohorts. Additionally, critical ligand-receptor interactions, including LGALS9-MET in liver metastasis and PVR-TIGIT in lymph node metastasis, were identified as potential therapeutic targets. Furthermore, CLOCK, a transcription factor, was associated with poor prognosis and influenced immune cell interactions and migration. Collectively, this study provides valuable insights into TME dynamics in GC and highlights potential avenues for targeted therapies.
Collapse
Affiliation(s)
- Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Kuan Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jing Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qi Ou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Wenzhe Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| |
Collapse
|
2
|
Wang K, Wan J, Zheng R, Xiao Y, Lv F, Ge H, Yang G, Cheng Y. SPP1 as a Prognostic and Immunotherapeutic Biomarker in Gliomas and Other Cancer Types: A Pan-Cancer Study. J Inflamm Res 2025; 18:2247-2265. [PMID: 39963684 PMCID: PMC11832131 DOI: 10.2147/jir.s505237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Background Gliomas, including glioblastoma (GBM), present significant treatment challenges due to their poor prognosis and complex tumor microenvironment. This study investigates the role of Secreted Phosphoprotein 1 (SPP1) as a prognostic and immunotherapeutic biomarker in gliomas and other cancers through pan-cancer analysis. Methods A comprehensive pan-cancer analysis was conducted using datasets from UCSC TCGA Pan-Cancer, TCGA-GBM, UALCAN, and single-cell sequencing data from GEO and TISCH. The correlation of SPP1 expression with overall survival (OS), progression-free survival (PFS), immune cell infiltration, and immune checkpoint markers was analyzed. Functional validation was performed via SPP1 knockdown in glioma cell lines to evaluate effects on proliferation, invasion, and immune interactions. Results SPP1 was found to be overexpressed in 27 tumor types, with high expression correlating with poor OS, PFS, and increased immune cell infiltration, particularly with CD8+ T cells and macrophages. Single-cell analysis indicated SPP1 enrichment in macrophages interacting with malignant GBM cells. Knockdown of SPP1 significantly inhibited glioma cell proliferation, invasion, and promoted apoptosis. Conclusion The findings suggest that SPP1 is a promising target for immunotherapy, potentially improving outcomes for patients with gliomas and other cancers. Further research is warranted to explore SPP1-targeted therapies and their efficacy in clinical settings.
Collapse
Affiliation(s)
- Kan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Jinxin Wan
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai City, Guangdong Province, 519090, People’s Republic of China
| | - Ruipeng Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Yifei Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Fengjun Lv
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Haitao Ge
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Guang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, People’s Republic of China
| | - Yu Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| |
Collapse
|
3
|
Han J, Lyu L. Identification of the biological functions and chemo-therapeutic responses of ITGB superfamily in ovarian cancer. Discov Oncol 2024; 15:198. [PMID: 38814534 PMCID: PMC11139846 DOI: 10.1007/s12672-024-01047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Patients with ovarian cancer (OC) tend to face a poor prognosis due to a lack of typical symptoms and a high rate of recurrence and chemo-resistance. Therefore, identifying representative and reliable biomarkers for early diagnosis and prediction of chemo-therapeutic responses is vital for improving the prognosis of OC. METHODS Expression levels, IHC staining, and subcellular distribution of eight ITGBs were analyzed using The Cancer Genome Atlas (TCGA)-Ovarian Serous Cystadenocarcinoma (OV) database, GEO DataSets, and the HPA website. PrognoScan and Univariate Cox were used for prognostic analysis. TIDE database, TIMER database, and GSCA database were used to analyze the correlation between immune functions and ITGBs. Consensus clustering analysis was performed to subtype OC patients in the TCGA database. LASSO regression was used to construct the predictive model. The Cytoscape software was used for identifying hub genes. The 'pRRophetic' R package was applied to predict chemo-therapeutic responses of ITGBs. RESULTS ITGBs were upregulated in OC tissues except ITGB1 and ITGB3. High expression of ITGBs correlated with an unfavorable prognosis of OC except ITGB2. In OC, there was a strong correlation between immune responses and ITGB2, 6, and 7. In addition, the expression matrix of eight ITGBs divided the TCGA-OV database into two subgroups. Subgroup A showed upregulation of eight ITGBs. The predictive model distinguishes OC patients from favorable prognosis to poor prognosis. Chemo-therapeutic responses showed that ITGBs were able to predict responses of common chemo-therapeutic drugs for patients with OC. CONCLUSIONS This article provides evidence for predicting prognosis, immuno-, and chemo-therapeutic responses of ITGBs in OC and reveals related biological functions of ITGBs in OC.
Collapse
Affiliation(s)
- Jiawen Han
- Department of Nutrition, Jinshan Hospital, Fudan University, 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Lin Lyu
- Department of Nutrition, Jinshan Hospital, Fudan University, 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
4
|
Leblebici A, Sancar C, Tercan B, Isik Z, Arayici ME, Ellidokuz EB, Basbinar Y, Yildirim N. In Silico Approach to Molecular Profiling of the Transition from Ovarian Epithelial Cells to Low-Grade Serous Ovarian Tumors for Targeted Therapeutic Insights. Curr Issues Mol Biol 2024; 46:1777-1798. [PMID: 38534733 PMCID: PMC10968906 DOI: 10.3390/cimb46030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
This paper aims to elucidate the differentially coexpressed genes, their potential mechanisms, and possible drug targets in low-grade invasive serous ovarian carcinoma (LGSC) in terms of the biologic continuity of normal, borderline, and malignant LGSC. We performed a bioinformatics analysis, integrating datasets generated using the GPL570 platform from different studies from the GEO database to identify changes in this transition, gene expression, drug targets, and their relationships with tumor microenvironmental characteristics. In the transition from ovarian epithelial cells to the serous borderline, the FGFR3 gene in the "Estrogen Response Late" pathway, the ITGB2 gene in the "Cell Adhesion Molecule", the CD74 gene in the "Regulation of Cell Migration", and the IGF1 gene in the "Xenobiotic Metabolism" pathway were upregulated in the transition from borderline to LGSC. The ERBB4 gene in "Proteoglycan in Cancer", the AR gene in "Pathways in Cancer" and "Estrogen Response Early" pathways, were upregulated in the transition from ovarian epithelial cells to LGSC. In addition, SPP1 and ITGB2 genes were correlated with macrophage infiltration in the LGSC group. This research provides a valuable framework for the development of personalized therapeutic approaches in the context of LGSC, with the aim of improving patient outcomes and quality of life. Furthermore, the main goal of the current study is a preliminary study designed to generate in silico inferences, and it is also important to note that subsequent in vitro and in vivo studies will be necessary to confirm the results before considering these results as fully reliable.
Collapse
Affiliation(s)
- Asim Leblebici
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, 35340 Izmir, Turkey;
| | - Ceren Sancar
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, 35340 Izmir, Turkey;
| | - Bahar Tercan
- Institute for Systems Biology, Seattle, WA 98109, USA;
| | - Zerrin Isik
- Department of Computer Engineering, Faculty of Engineering, Dokuz Eylul University, 35340 Izmir, Turkey;
| | - Mehmet Emin Arayici
- Department of Public Health, Faculty of Medicine, Dokuz Eylul University, 35340 Izmir, Turkey;
| | - Ender Berat Ellidokuz
- Department of Internal Medicine, Faculty of Medicine, Dokuz Eylul University, 35340 Izmir, Turkey;
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Izmir, Turkey;
| | - Nuri Yildirim
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, 35340 Izmir, Turkey;
| |
Collapse
|