1
|
Pranter R, Feiner N. Spatiotemporal distribution of neural crest cells in the common wall lizard Podarcis muralis. Dev Dyn 2024. [PMID: 39560189 DOI: 10.1002/dvdy.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Neural crest cells (NCCs) are migratory embryonic stem cells that give rise to a diverse set of cell types. Here we describe the dynamic distribution of NCCs in developing embryos of the common wall lizard Podarcis muralis inferred from 10 markers. Our aim is to provide insights into the NCC development of lacertid lizards and to infer evolutionary modifications by comparisons to other tetrapods. RESULTS NCC migration is ongoing at oviposition, following three streams in the head and multiple in the trunk. From 21ss, we observe expression patterns indicating the beginning of differentiation toward mesenchymal and neuronal fates. By 35ss, migration is restricted to caudal levels, and fully differentiated chromaffin cells are observed. CONCLUSIONS We find that some markers show patterns that differ from other tetrapods. For example, the antibody HNK-1 labels three NCC streams from the hindbrain while some comparable reptile studies describe four. However, the information emerging from all markers combined shows that the overall spatiotemporal distribution of NCCs in the common wall lizard is largely conserved with that of other tetrapods. Our study highlights the dynamic nature of seemingly canonical marker genes and provides the first description of spatiotemporal NCC dynamics in a lacertid lizard.
Collapse
Affiliation(s)
- Robin Pranter
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
2
|
Sexton CL, Diogo R, Subiaul F, Bradley BJ. Raising an Eye at Facial Muscle Morphology in Canids. BIOLOGY 2024; 13:290. [PMID: 38785773 PMCID: PMC11118188 DOI: 10.3390/biology13050290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The evolution of facial muscles in dogs has been linked to human preferential selection of dogs whose faces appear to communicate information and emotion. Dogs who convey, especially with their eyes, a sense of perceived helplessness can elicit a caregiving response from humans. However, the facial muscles used to generate such expressions may not be uniquely present in all dogs, but rather specifically cultivated among various taxa and individuals. In a preliminary, qualitative gross anatomical evaluation of 10 canid specimens of various species, we find that the presence of two facial muscles previously implicated in human-directed canine communication, the levator anguli occuli medialis (LAOM) and the retractor anguli occuli lateralis (RAOL), was not unique to domesticated dogs (Canis familiaris). Our results suggest that these aspects of facial musculature do not necessarily reflect selection via human domestication and breeding. In addition to quantitatively evaluating more and other members of the Canidae family, future directions should include analyses of the impact of superficial facial features on canine communication and interspecies communication between dogs and humans.
Collapse
Affiliation(s)
- Courtney L. Sexton
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | - Rui Diogo
- Department of Anatomy, Howard University School of Medicine, Washington, DC 20059, USA
| | - Francys Subiaul
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
- Department of Speech, Language and Hearing Sciences, The George Washington University, Washington, DC 20052, USA
| | - Brenda J. Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
3
|
Myoen S, Mochizuki M, Shibuya-Takahashi R, Fujimori H, Shindo N, Yamaguchi K, Yasuda J, Abe J, Imai T, Sato I, Adachi H, Kawamura S, Ito A, Tamai K. CD271 promotes proliferation and migration in bladder cancer. Genes Cells 2024; 29:73-85. [PMID: 38016691 DOI: 10.1111/gtc.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Bladder cancer is a urothelial cancer and effective therapeutic strategies for its advanced stages are limited. Here, we report that CD271, a neurotrophin receptor, promotes the proliferation and migration of bladder cancer cells. CD271 knockdown decreased proliferation in both adherent and spheroid cultures, and vice versa when CD271 was overexpressed in bladder cancer cell lines. CD271 depletion impaired tumorigenicity in vivo. Migration activity was reduced by CD271 knockdown and TAT-Pep5, a known CD271-Rho GDI-binding inhibitor. Apoptosis was induced by CD271 knockdown. Comprehensive gene expression analysis revealed alterations in E2F- and Myc-related pathways upon CD271 expression. In clinical cases, patients with high CD271 expression showed significantly shortened overall survival. In surgically resected specimens, pERK, a known player in proliferation signaling, colocalizes with CD271. These data indicate that CD271 is involved in bladder cancer malignancy by promoting cell proliferation and migration, resulting in poor prognosis.
Collapse
Affiliation(s)
- Shingo Myoen
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
- Division of Urology, Miyagi Cancer Center, Natori, Miyagi, Japan
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Norihisa Shindo
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Jiro Abe
- Division of Thoracic Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Takayuki Imai
- Division of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Hisanobu Adachi
- Division of Urology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | | | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| |
Collapse
|
4
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
5
|
Wrangham RW. Targeted conspiratorial killing, human self-domestication and the evolution of groupishness. EVOLUTIONARY HUMAN SCIENCES 2021; 3:e26. [PMID: 37588548 PMCID: PMC10427284 DOI: 10.1017/ehs.2021.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Groupishness is a set of tendencies to respond to group members with prosociality and cooperation in ways that transcend apparent self-interest. Its evolution is puzzling because it gives the impression of breaking the ordinary rules of natural selection. Boehm's solution is that moral elements of groupishness originated and evolved as a result of group members becoming efficient executioners of antisocial individuals, and he noted that self-domestication would have proceeded from the same dynamic. Self-domestication is indicated first at ~300,000 years ago and has probably gathered pace ever since, suggesting selection for self-domestication and groupishness for at least 12,000 generations. Here I propose that a specifically human style of violence, targeted conspiratorial killing, contributed importantly to both self-domestication and to promoting groupishness. Targeted conspiratorial killing is unknown in chimpanzees or any other vertebrate, and is significant because it permits coalitions to kill antisocial individuals cheaply. The hypothesis that major elements of groupishness are due to targeted conspiratorial killing helps explain why they are much more elaborated in humans than in other species.
Collapse
Affiliation(s)
- Richard W. Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Zerulla TC, Stoddard PK. The Biology of Polymorphic Melanic Side-Spotting Patterns in Poeciliid Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.608289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanin-based color patterns are an emerging model for studying molecular and evolutionary mechanisms driving phenotypic correlations. Extensive literature exists on color patterns and their correlated traits in the family Poeciliidae, indicating that these fishes are tractable models. We review the biology of polymorphic melanic side-spotting patterns characterized by macromelanophores forming irregular spotted patterns across fishes’ flanks. These patterns are present in the generaGambusia, Limia, Phalloceros, Poecilia, andXiphophorus. Their presence is controlled by dominant genes on autosomes or sex chromosomes. Variation in expression is under polygenic control; however, these genes’ identities are still largely unknown. In someGambusia holbrookiandPoecilia latipinna, expression is dependent on low temperature exposure, but underlying molecular mechanisms are unknown. Spotted fish develop melanoma in rare cases and are a well-developed model for melanoma research. Little is known about other physiological correlates except that spottedG. holbrookimales exhibit higher basal cortisol levels than unspotted males and that metabolic rate does not differ between morphs in someXiphophorusspecies. Behavioral differences between morphs are widespread, but specific to population, species, and social context. SpottedG. holbrookimales appear to be more social and more dominant. Juvenile spottedG. holbrookihave lower behavioral flexibility, and spottedX. variatusexhibit greater stress resistance. Findings conflict on whether morphs differ in sexual behavior and in sexual selection by females. Melanic side-spotting patterns are uncommon (<30%) in populations, although extreme high-frequency populations exist. This low frequency is surprising for dominant genes, indicating that a variety of selective pressures influence both these patterns and their correlated traits. Little is known about reproductive life history traits. SpottedG. holbrookiare larger and have higher survival when uncommon, but underlying mechanisms remain unknown. Spotted morphs appear to have a strong selective advantage during predation. Predators prefer to attack and consume unspotted morphs; however, this preference disappears when spottedG. holbrookimales are common, indicating negative frequency-dependent selection. Spotted morphs are preferred socially under turbid conditions, but other environmental factors that shape phenotypic correlations and morph fitness have not been studied. Finally, we present questions for future studies on melanic side-spotting patterns.
Collapse
|