1
|
Amador A, Mindlin GB, Elemans CPH. Transitions and tricks: nonlinear phenomena in the avian voice. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240007. [PMID: 40176510 PMCID: PMC11966160 DOI: 10.1098/rstb.2024.0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 04/04/2025] Open
Abstract
Birds evolved a novel vocal organ, the syrinx, that exhibits a high anatomical diversity. In the few species investigated, the syrinx can contain up to three pairs of functional syringeal vocal folds, acting as independent sound sources, and eight pairs of muscles. This rich variety in vocal structures and motor control results in a wide range of nonlinear phenomena (NLPs) and interactions that are distinct to avian vocal physiology, with many fascinating mechanisms yet to be discovered. Here, we review the occurrence of classical signatures of nonlinear dynamics, such as NLPs, including frequency jumps and transitions to chaos in birds. However, birds employ several additional unique tricks and transitions of inherent nonlinear dynamical nature that further enrich their vocal dynamics and are relevant for understanding the motor control of their vocalizations. Particularly, saddle-node in limit cycle (SNILC) bifurcations can switch sounds from tonal to harmonically rich and change the physiological control of fundamental frequency. In mammalian phonation, these bifurcations are mostly explored in the context of register transitions but could be equally relevant to altering vocal fold dynamical behaviour. Due to their diverse anatomy compared to mammals, birds provide unique opportunities to explore rich nonlinear dynamics in vocal production.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.
Collapse
Affiliation(s)
- Ana Amador
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Física Interdisciplinaria y Aplicada (INFINA – CONICET - UBA), Buenos Aires, Argentina
| | - Gabriel B. Mindlin
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Física Interdisciplinaria y Aplicada (INFINA – CONICET - UBA), Buenos Aires, Argentina
| | - Coen P. H. Elemans
- Sound Communication and Behaviour Group, Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Xia H, Ma N, Li A, Luo J. Call production and wingbeat coupling is flexible and species-specific in echolocating bats. Ann N Y Acad Sci 2025. [PMID: 40159238 DOI: 10.1111/nyas.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Echolocation and flight are two key behavioral innovations that contribute to the evolutionary success and diversification of bats, which are classified phylogenetically into two suborders: Yinpterochiroptera and Yangochiroptera. Considerable research has identified a coupling between call production and wingbeat in flying bats, although only a few have quantified the relationship and all were restricted to bats from the suborder Yangochiroptera. Here, we quantitatively compared the coupling between call production and wingbeat in two representative species of bats, Hipposideros pratti of the suborder Yinpterochiroptera and Myotis pilosus of the suborder Yangochiroptera, under identical experimental settings. We found that (1) both species exhibited the temporal coupling of call production and wingbeat; (2) the degree of coupling is species-specific, with M. pilosus showing a tighter coupling between call timing and wingbeat cycle than H. pratti; (3) the coupling is a plastic trait, as evidenced by the effect of environmental clutter in H. pratti; and (4) there is no evidence that the coupling of call production and wingbeat limits the source level control in either species. We suggest that the coupling between call production and wingbeat is flexible and species-specific, which may not compromise precise echolocation control in bats.
Collapse
Affiliation(s)
- Hangjing Xia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Nina Ma
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Aoqiang Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jinhong Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
3
|
Ajji M. J, Lang JW. Gharial acoustic signaling: Novel underwater pops are temporally based, context-dependent, seasonally stable, male-specific, and individually distinctive. J Anat 2025; 246:415-443. [PMID: 39887971 PMCID: PMC11828749 DOI: 10.1111/joa.14171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 02/01/2025] Open
Abstract
Gharials (Gavialis gangeticus) produce a sudden, high amplitude, pulsatile, underwater sound called a POP. In this study, gharial POPs ranged from 9 to 55 ms, and were clearly audible on land and water, at ≥500 m. POPs were only performed underwater by adult males possessing a sex-specific, cartilaginous narial excrescence, termed the ghara. We recorded 130 POP events of seven wild adult males in 115 km stretch of the Chambal River during 2017-2019, using hydrophones and aerial mics. A POP event occurs when a male produces a single or double or triple POP, each with a specific duration and timing. A POP event was incorporated into a complex, multi-modal breathing display, typically performed by each male during the breeding season. Key features of this novel gharial POP signal are documented here for the first time. These include its incorporation into a complex breathing display, its reliance on temporal rather than spectral elements, its dependence on a specific social context, its stability within an individual, and its individually distinctive patterning specific to a particular male. The breathing display consisted of sub-audible vibrations (SAV) preceding each POP, then a stereotyped exhalation-inhalation-exhalation sequence, concluding with bubbling and submergence. In our study, 96% of the variation in POP signal parameters was explained by POP signal timings (92%) and number of POPs (4%), and only 2% was related to spectral features. Each POP event was performed in a specific social setting. Two behavioral contexts were examined: ALERT and PATROL. In each context, male identities were examined using Discriminant Function Analysis (DFA). Within each context, each of the seven males exhibited distinctive POP patterns that were context-specific and denoted a male's identity and his location. POP signal features were stable for individual males, from 1 year to the next. Overall, the seven males showed POP patterns that were individually specific, with minimal overlap amongst males, yet these were remarkably diverse. The stereotypy of POP patterns, based on temporal versus frequency difference was best characterized statistically using DFA metrics, rather than Beecher's Information Statistic, MANOVA, or Discriminant Score computations. Our field observations indicated that audiences of gharial, located nearby, and/or in the distance, responded immediately to POPs by orienting in the signal direction. Extensive auditory studies of crocodylians indicate that their capacity for auditory temporal discrimination and neural processing in relation to locating a sound target is on par with that of birds. How the POP sound is produced and broadcast loudly in both water and air has received little study to date. We briefly summarize existing reports on ghara anatomy, ontogeny, and paleontology. Finally, preliminary observations made in a clear underwater zoo enclosure indicate that jaw claps performed entirely underwater produce POP sounds. Simultaneous bubble clouds emanating from the base of the ghara are suggestive of cavitation phenomena associated with loud high volume sounds such as shrimp snaps and seal/walrus claps. We discuss the likelihood that the adult male's ghara plays an essential role in the production of the non-vocal underwater POP, a sexually dimorphic acoustic signal unique to gharial.
Collapse
Affiliation(s)
- Jailabdeen Ajji M.
- Gharial Ecology ProjectMadras Crocodile Bank TrustMamallapuram, Tamil NaduIndia
| | - Jeffrey W. Lang
- Gharial Ecology ProjectMadras Crocodile Bank TrustMamallapuram, Tamil NaduIndia
| |
Collapse
|
4
|
Osiecka AN, Bryndza P, Briefer EF, Wojczulanis-Jakubas K. Long distance calls: Negligible information loss of little auk social vocalisations due to high frequency propagation losses. PLoS Comput Biol 2024; 20:e1011961. [PMID: 39621775 PMCID: PMC11981542 DOI: 10.1371/journal.pcbi.1011961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/12/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
How well does the information contained in vocal signals travel through the environment? To assess the efficiency of information transfer in little auk (Alle alle, an Arctic seabird) calls over distance, we selected two of the social call types with the highest potential for individuality coding. Using available recordings of known individuals, we calculated the apparent source levels, with apparent maximum peak sound pressure level (ASPL) of 63 dB re 20 μPa at 1 m for both call types. Further, we created a sound attenuation model using meteorological data collected in the vicinity of the little auk colony in Hornsund, Spitsbergen. Using this model, we modelled the calls to reflect higher frequency filtering and sound level loss occurring during spherical spreading in perfect local conditions, down to the putative hearing threshold of the species, calculated to equal ASPL of signals "propagated" to roughly one kilometre. Those modelled calls were then used in a permuted discriminant function analysis, support vector machine models, and linear models of Beecher's information statistic, to investigate whether transmission loss will affect the retention of individual information of the signal. Calls could be correctly classified to individuals above chance level independently of the distance, down to and over the putative physiological hearing threshold. Interestingly, the information capacity of the signal did not decrease with its filtering and attenuation. While this study touches on signal properties purely and cannot provide evidence of the actual use by the animals, it shows that little auk signals can theoretically travel long distances with negligible information loss, and supports the hypothesis that vocalisations could facilitate long-distance communication in the species.
Collapse
Affiliation(s)
- Anna N. Osiecka
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
- Behavioural Ecology Group, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Przemysław Bryndza
- Institute of High Frequency Technology, Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Aachen, Germany
| | - Elodie F. Briefer
- Behavioural Ecology Group, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Castro MG, Amado TF, Olalla-Tárraga MÁ. Correlated evolution between body size and echolocation in bats (order Chiroptera). BMC Ecol Evol 2024; 24:44. [PMID: 38622513 PMCID: PMC11017568 DOI: 10.1186/s12862-024-02231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Body size and echolocation call frequencies are related in bats. However, it is unclear if this allometry applies to the entire clade. Differences have been suggested between nasal and oral emitting bats, as well as between some taxonomic families. Additionally, the scaling of other echolocation parameters, such as bandwidth and call duration, needs further testing. Moreover, it would be also interesting to test whether changes in body size have been coupled with changes in these echolocation parameters throughout bat evolution. Here, we test the scaling of peak frequency, bandwidth, and call duration with body mass using phylogenetically informed analyses for 314 bat species. We specifically tested whether all these scaling patterns differ between nasal and oral emitting bats. Then, we applied recently developed Bayesian statistical techniques based on large-scale simulations to test for the existence of correlated evolution between body mass and echolocation. RESULTS Our results showed that echolocation peak frequencies, bandwidth, and duration follow significant allometric patterns in both nasal and oral emitting bats. Changes in these traits seem to have been coupled across the laryngeal echolocation bats diversification. Scaling and correlated evolution analyses revealed that body mass is more related to peak frequency and call duration than to bandwidth. We exposed two non-exclusive kinds of mechanisms to explain the link between size and each of the echolocation parameters. CONCLUSIONS The incorporation of Bayesian statistics based on large-scale simulations could be helpful for answering macroevolutionary patterns related to the coevolution of traits in bats and other taxonomic groups.
Collapse
Affiliation(s)
- Mario G Castro
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, Spain.
- Instituto de Cambio Global, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain.
| | - Talita Ferreira Amado
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, Spain
- German Center for Integrative Bioaffiliationersity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Miguel Á Olalla-Tárraga
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, Spain
- Instituto de Cambio Global, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| |
Collapse
|
6
|
Lewanzik D, Ratcliffe JM, Etzler EA, Goerlitz HR, Jakobsen L. Stealth echolocation in aerial hawking bats reflects a substrate gleaning ancestry. Curr Biol 2023; 33:5208-5214.e3. [PMID: 37898121 DOI: 10.1016/j.cub.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
Predator-prey co-evolution can escalate into an evolutionary arms race.1 Examples of insect countermeasures to bat echolocation are well-known,2 but presumptive direct counter strategies in bats to insect anti-bat tactics are rare. The emission of very low-intensity calls by the hawking Barbastella barbastellus to circumvent high-frequency moth hearing is the most convincing countermeasure known.2,3 However, we demonstrate that stealth echolocation did not evolve through a high-intensity aerial hawking ancestor becoming quiet as previously hypothesized2,3,4 but from a gleaning ancestor transitioning into an obligate aerial hawker. Our ancestral state reconstructions show that the Plecotini ancestor likely gleaned prey using low-intensity calls typical of gleaning bats and that this ability-and associated traits-was subsequently lost in the barbastelle lineage. Barbastelles did not, however, revert to the oral, high-intensity call emission that other hawking bats use but retained the low-intensity nasal emission of closely related gleaning plecotines despite an extremely limited echolocation range. We further show that barbastelles continue to emit low-intensity calls even under adverse noise conditions and do not broaden the echolocation beam during the terminal buzz, unlike other vespertilionids attacking airborne prey.5,6 Together, our results suggest that barbastelles' echolocation is subject to morphological constraints prohibiting higher call amplitudes and beam broadening in the terminal buzz. We suggest that an abundance of eared prey allowed the co-opting and maintenance of low-intensity, nasal echolocation in today's obligate hawking barbastelle and that this unique foraging behavior7 persists because barbastelles remain a rare, acoustically inconspicuous predator to eared moths. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Daniel Lewanzik
- Acoustic and Functional Ecology, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany; Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - John M Ratcliffe
- Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Erik A Etzler
- Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Lasse Jakobsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
7
|
Brandt EE, Duke S, Wang H, Mhatre N. The ground offers acoustic efficiency gains for crickets and other calling animals. Proc Natl Acad Sci U S A 2023; 120:e2302814120. [PMID: 37934821 PMCID: PMC10655215 DOI: 10.1073/pnas.2302814120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/01/2023] [Indexed: 11/09/2023] Open
Abstract
Male crickets attract females by producing calls with their forewings. Louder calls travel further and are more effective at attracting mates. However, crickets are much smaller than the wavelength of their call, and this limits their power output. A small group called tree crickets make acoustic tools called baffles which reduce acoustic short-circuiting, a source of dipole inefficiency. Here, we ask why baffling is uncommon among crickets. We hypothesize that baffling may be rare because like other tools they offer insufficient advantage for most species. To test this, we modelled the calling efficiencies of crickets within the full space of possible natural wing sizes and call frequencies, in multiple acoustic environments. We then generated efficiency landscapes, within which we plotted 112 cricket species across 7 phylogenetic clades. We found that all sampled crickets, in all conditions, could gain efficiency from tool use. Surprisingly, we also found that calling from the ground significantly increased efficiency, with or without a baffle, by as much as an order of magnitude. We found that the ground provides some reduction of acoustic short-circuiting but also halves the air volume within which sound is radiated. It simultaneously reflects sound upwards, allowing recapture of a significant amount of acoustic energy through constructive interference. Thus, using the ground as a reflective baffle is an effective strategy for increasing calling efficiency. Indeed, theory suggests that this increase in efficiency is accessible not just to crickets but to all acoustically communicating animals whether they are dipole or monopole sound sources.
Collapse
Affiliation(s)
- Erin E. Brandt
- Department of Biology, Western University, London, ONN6A 3K7, Canada
| | - Sarah Duke
- Department of Biology, Western University, London, ONN6A 3K7, Canada
| | - Honglin Wang
- Department of Biology, Western University, London, ONN6A 3K7, Canada
| | - Natasha Mhatre
- Department of Biology, Western University, London, ONN6A 3K7, Canada
| |
Collapse
|
8
|
Varella MAC. Nocturnal selective pressures on the evolution of human musicality as a missing piece of the adaptationist puzzle. Front Psychol 2023; 14:1215481. [PMID: 37860295 PMCID: PMC10582961 DOI: 10.3389/fpsyg.2023.1215481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Human musicality exhibits the necessary hallmarks for biological adaptations. Evolutionary explanations focus on recurrent adaptive problems that human musicality possibly solved in ancestral environments, such as mate selection and competition, social bonding/cohesion and social grooming, perceptual and motor skill development, conflict reduction, safe time-passing, transgenerational communication, mood regulation and synchronization, and credible signaling of coalition and territorial/predator defense. Although not mutually exclusive, these different hypotheses are still not conceptually integrated nor clearly derived from independent principles. I propose The Nocturnal Evolution of Human Musicality and Performativity Theory in which the night-time is the missing piece of the adaptationist puzzle of human musicality and performing arts. The expansion of nocturnal activities throughout human evolution, which is tied to tree-to-ground sleep transition and habitual use of fire, might help (i) explain the evolution of musicality from independent principles, (ii) explain various seemingly unrelated music features and functions, and (iii) integrate many ancestral adaptive values proposed. The expansion into the nocturnal niche posed recurrent ancestral adaptive challenges/opportunities: lack of luminosity, regrouping to cook before sleep, imminent dangerousness, low temperatures, peak tiredness, and concealment of identity. These crucial night-time features might have selected evening-oriented individuals who were prone to acoustic communication, more alert and imaginative, gregarious, risk-taking and novelty-seeking, prone to anxiety modulation, hedonistic, promiscuous, and disinhibited. Those night-time selected dispositions may have converged and enhanced protomusicality into human musicality by facilitating it to assume many survival- and reproduction-enhancing roles (social cohesion and coordination, signaling of coalitions, territorial defense, antipredatorial defense, knowledge transference, safe passage of time, children lullabies, and sexual selection) that are correspondent to the co-occurring night-time adaptive challenges/opportunities. The nocturnal dynamic may help explain musical features (sound, loudness, repetitiveness, call and response, song, elaboration/virtuosity, and duetting/chorusing). Across vertebrates, acoustic communication mostly occurs in nocturnal species. The eveningness chronotype is common among musicians and composers. Adolescents, who are the most evening-oriented humans, enjoy more music. Contemporary tribal nocturnal activities around the campfire involve eating, singing/dancing, storytelling, and rituals. I discuss the nocturnal integration of musicality's many roles and conclude that musicality is probably a multifunctional mental adaptation that evolved along with the night-time adaptive landscape.
Collapse
|
9
|
Madsen PT, Siebert U, Elemans CPH. Toothed whales use distinct vocal registers for echolocation and communication. Science 2023; 379:928-933. [PMID: 36862790 DOI: 10.1126/science.adc9570] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Echolocating toothed whales (odontocetes) capture fast-moving prey in dark marine environments, which critically depends on their ability to generate powerful, ultrasonic clicks. How their supposedly air-driven sound source can produce biosonar clicks at depths of >1000 meters, while also producing rich vocal repertoires to mediate complex social communication, remains unknown. We show that odontocetes possess a sound production system based on air driven through nasal passages that is functionally analogous to laryngeal and syringeal sound production. Tissue vibration in different registers produces distinct echolocation and communication signals across all major odontocete clades, and thus provides a physiological basis for classifying their vocal repertoires. The vocal fry register is used by species from porpoises to sperm whales for generating powerful, highly air-efficient echolocation clicks.
Collapse
Affiliation(s)
- Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Büsum, Germany
| | - Coen P H Elemans
- Sound Communication and Behavior Group, Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
10
|
Dinh JP, Patek SN. Weapon performance and contest assessment strategies of the cavitating snaps in snapping shrimp. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jason P. Dinh
- Biology Department Duke University Durham North Carolina USA
| | - S. N. Patek
- Biology Department Duke University Durham North Carolina USA
| |
Collapse
|
11
|
Robin O, Plante C. An illustrated tutorial for logarithmic scales and decibels in acoustics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2880. [PMID: 36456292 DOI: 10.1121/10.0015144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Acoustics is generally defined as the science that deals with the production, transmission, and reception of sound and the understanding and control of its effects. In fact, the fields of acoustics cover an especially broad range of subjects and domains, and comprehensive acoustics textbooks are usually quite thick as a consequence. While they are valuable resources for researchers, these books might appear a little daunting for a young audience or for people who are new to acoustics. This paper is an example of how educational comics can be designed and used to introduce one of the most commonly discussed topics when the basics of acoustics are taught: decibel level. Seven drawn pages constitute a visual support to explain the origin and history of the decibel, together with examples from acoustics and other domains on the use of logarithmic scales and classical decibel calculations. Several comments and comprehensive bibliographical references are also provided for each drawn page to enlarge the range of subjects or exercises that can be discussed in courses and foster further readings.
Collapse
Affiliation(s)
- Olivier Robin
- Centre de Recherche Acoustique-Signal-Humain, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, Québec, Canada
| | - Catherine Plante
- Independent comics writer, 4528 Rue Saint-Denis, Montréal H2J 2L3, Québec, Canada
| |
Collapse
|
12
|
Larsen LB, Adam I, Berman GJ, Hallam J, Elemans CPH. Driving singing behaviour in songbirds using a multi-modal, multi-agent virtual environment. Sci Rep 2022; 12:13414. [PMID: 35927295 PMCID: PMC9352672 DOI: 10.1038/s41598-022-16456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Interactive biorobotics provides unique experimental potential to study the mechanisms underlying social communication but is limited by our ability to build expressive robots that exhibit the complex behaviours of birds and small mammals. An alternative to physical robots is to use virtual environments. Here, we designed and built a modular, audio-visual 2D virtual environment that allows multi-modal, multi-agent interaction to study mechanisms underlying social communication. The strength of the system is an implementation based on event processing that allows for complex computation. We tested this system in songbirds, which provide an exceptionally powerful and tractable model system to study social communication. We show that pair-bonded zebra finches (Taeniopygia guttata) communicating through the virtual environment exhibit normal call timing behaviour, males sing female directed song and both males and females display high-intensity courtship behaviours to their mates. These results suggest that the environment provided is sufficiently natural to elicit these behavioral responses. Furthermore, as an example of complex behavioral annotation, we developed a fully unsupervised song motif detector and used it to manipulate the virtual social environment of male zebra finches based on the number of motifs sung. Our virtual environment represents a first step in real-time automatic behaviour annotation and animal–computer interaction using higher level behaviours such as song. Our unsupervised acoustic analysis eliminates the need for annotated training data thus reducing labour investment and experimenter bias.
Collapse
Affiliation(s)
| | - Iris Adam
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - John Hallam
- University of Southern Denmark, SDU-Biorobotics, Odense, Denmark
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
13
|
Clark FE, Dunn JC. From Soundwave to Soundscape: A Guide to Acoustic Research in Captive Animal Environments. Front Vet Sci 2022; 9:889117. [PMID: 35782565 PMCID: PMC9244380 DOI: 10.3389/fvets.2022.889117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sound is a complex feature of all environments, but captive animals' soundscapes (acoustic scenes) have been studied far less than those of wild animals. Furthermore, research across farms, laboratories, pet shelters, and zoos tends to focus on just one aspect of environmental sound measurement: its pressure level or intensity (in decibels). We review the state of the art of captive animal acoustic research and contrast this to the wild, highlighting new opportunities for the former to learn from the latter. We begin with a primer on sound, aimed at captive researchers and animal caregivers with an interest (rather than specific expertise) in acoustics. Then, we summarize animal acoustic research broadly split into measuring sound from animals, or their environment. We guide readers from soundwave to soundscape and through the burgeoning field of conservation technology, which offers new methods to capture multiple features of complex, gestalt soundscapes. Our review ends with suggestions for future research, and a practical guide to sound measurement in captive environments.
Collapse
Affiliation(s)
- Fay E. Clark
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- School of Psychological Science, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- *Correspondence: Fay E. Clark
| | - Jacob C. Dunn
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- Biological Anthropology, Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Cronin AD, Smit JAH, Muñoz MI, Poirier A, Moran PA, Jerem P, Halfwerk W. A comprehensive overview of the effects of urbanisation on sexual selection and sexual traits. Biol Rev Camb Philos Soc 2022; 97:1325-1345. [PMID: 35262266 PMCID: PMC9541148 DOI: 10.1111/brv.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
Abstract
Urbanisation can affect mating opportunities and thereby alter inter- and intra-sexual selection pressures on sexual traits. Biotic and abiotic urban conditions can influence an individual's success in pre- and post-copulatory mating, for example through impacts on mate attraction and mate preference, fertilisation success, resource competition or rival interactions. Divergent sexual selection pressures can lead to differences in behavioural, physiological, morphological or life-history traits between urban and non-urban populations, ultimately driving adaptation and speciation. Most studies on urban sexual selection and mating interactions report differences between urban and non-urban populations or correlations between sexual traits and factors associated with increased urbanisation, such as pollution, food availability and risk of predation and parasitism. Here we review the literature on sexual selection and sexual traits in relation to urbanisation or urban-associated conditions. We provide an extensive list of abiotic and biotic factors that can influence processes involved in mating interactions, such as signal production and transmission, mate choice and mating opportunities. We discuss all relevant data through the lens of two, non-mutually exclusive theories on sexual selection, namely indicator and sensory models. Where possible, we indicate whether these models provide the same or different predictions regarding urban-adapted sexual signals and describe different experimental designs that can be useful for the different models as well as to investigate the drivers of sexual selection. We argue that we lack a good understanding of: (i) the factors driving urban sexual selection; (ii) whether reported changes in traits result in adaptive benefits; and (iii) whether these changes reflect a short-term ecological, or long-term evolutionary response. We highlight that urbanisation provides a unique opportunity to study the process and outcomes of sexual selection, but that this requires a highly integrative approach combining experimental and observational work.
Collapse
Affiliation(s)
- Andrew D Cronin
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Judith A H Smit
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Matías I Muñoz
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Armand Poirier
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Peter A Moran
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Paul Jerem
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Wouter Halfwerk
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
15
|
Foskolos I, Pedersen MB, Beedholm K, Uebel AS, Macaulay J, Stidsholt L, Brinkløv S, Madsen PT. Echolocating Daubenton's bats are resilient to broadband, ultrasonic masking noise during active target approaches. J Exp Biol 2022; 225:274313. [DOI: 10.1242/jeb.242957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022]
Abstract
Echolocating bats hunt prey on the wing under conditions of poor lighting by emission of loud calls and subsequent auditory processing of weak returning echoes. To do so, they need adequate echo-to-noise ratios (ENRs) to detect and distinguish target echoes from masking noise. Early obstacle avoidance experiments report high resilience to masking in free-flying bats, but whether this is due to spectral or spatiotemporal release from masking, advanced auditory signal detection or an increase in call amplitude (Lombard effect) remains unresolved. We hypothesized that bats with no spectral, spatial or temporal release from masking noise, defend a certain ENR via a Lombard effect. We trained four bats (Myotis daubentonii) to approach and land on a target that broadcasted broadband noise at four different levels. An array of seven microphones enabled acoustic localization of the bats and source level estimation of their approach calls. Call duration and peak frequency did not change, but average call source levels (SLRMS, at 0.1 m as dB re. 20 µPa, root-mean-square) increased, from 112 dB in the no-noise treatment, to 118 dB (maximum 129 dB) at the maximum noise level of 94 dB. The magnitude of the Lombard effect was small (0.13 dB SLRMS/dB of noise), resulting in mean broadband and narrowband ENRs of -11 and 8 dB respectively at the highest noise level. Despite these poor ENRs, the bats still performed echo-guided landings, making us conclude that they are very resilient to masking even when they cannot avoid it spectrally, spatially or temporally.
Collapse
Affiliation(s)
- Ilias Foskolos
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Kristian Beedholm
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Jamie Macaulay
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Laura Stidsholt
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Signe Brinkløv
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
- Department of Ecoscience - Wildlife Ecology, Aarhus University, 8410 Rønde, Denmark
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|