1
|
Glazier DS. Does death drive the scaling of life? Biol Rev Camb Philos Soc 2025; 100:586-619. [PMID: 39611289 DOI: 10.1111/brv.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors. In this review, I propose and provide several lines of evidence supporting a new ecological perspective that I call the "mortality theory of ecology" (MorTE). According to this viewpoint, mortality imposes time limits on the growth, development, and reproduction of organisms. Accordingly, small, vulnerable organisms subject to high mortality due to predation and other environmental hazards have evolved faster, shorter lives than larger, more protected organisms. A MorTE also includes various corollary, size-related internal and external causative factors (e.g. intraspecific resource competition, geometric surface area to volume effects on resource supply/transport and the protection of internal tissues from environmental hazards, internal homeostatic regulatory systems, incidence of pathogens and parasites, etc.) that impact the scaling of life. A mortality-centred approach successfully predicts the ranges of body-mass scaling slopes observed for many kinds of biological and ecological traits. Furthermore, I argue that mortality rate should be considered the ultimate (evolutionary) driver of the scaling of life, that is expressed in the context of other proximate (functional) drivers such as information-based biological regulation and spatial (geometric) and energetic (metabolic) constraints.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
2
|
Abstract
Extra-pair paternity (EPP) benefits to improve the reproductive success via extra-pair fertilizations without the costs of parental care in males and through improved offspring quality with additional food and parental care in females among species of birds. Variations in the EPP appear to link to behavioral and ecological factors and sexual selection. According to the "relationship intelligence hypothesis", the cognitive abilities of the birds play an important role in maintaining long-term relationships. Here, we undertook the first comparative test of the relationships between extra-pair paternity and brain size, testis size, and life histories among 315 species of birds using phylogenetically controlled comparative analyses and path analysis. After controlling for the effects of shared ancestry and body mass, the frequency of EPP was negatively correlated with relative brain size, but positively with testis size across species of birds. However, the frequency of EPP was not linked to life-history traits (e.g. incubation period, fledging period, clutch size, egg mass, and longevity). Our findings suggest that large-brained birds associated with enhanced cognitive abilities are more inclined to maintain long-term stable relationships with their mates and to mutualism with them than to increase the frequency of EPP.
Collapse
Affiliation(s)
- Yating Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China.,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China.,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
3
|
Testing the Role of Natural and Sexual Selection on Testes Size Asymmetry in Anurans. BIOLOGY 2023; 12:biology12020151. [PMID: 36829429 PMCID: PMC9952133 DOI: 10.3390/biology12020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Directional asymmetry in testes size is commonly documented in vertebrates. The degree of testes size asymmetry has been confirmed to be associated with natural and sexual selection. However, the role of natural and sexual selection driving variations in testes size asymmetry among species of anurans are largely unknown. Here, we studied the patterns of variations in testes size asymmetry and the factors shaping its variations among 116 anuran species. The results indicated that the left size-biased testes in 110 species (94.83% of 116 species) is more common than the right size-biased testes in six species. For all studied species, the degree of testes size asymmetry was positively associated with relative livers and body fat mass, following the prediction of the packaging hypothesis. We also found that the postcopulatory sperm competition (e.g., residual testes size) was positively associated with the degree of testes asymmetry. However, environmental stress (e.g., high latitude, precipitation seasonality and temperature seasonality) did not promote more symmetrical testes for all species. Our findings suggest that both natural selection for larger livers in body space and sexual selection for rapid increase in testis mass for most species during the breeding season can play key roles in driving in testes size asymmetry across anuran species.
Collapse
|
4
|
Geographical Variation in Body Size and the Bergmann's Rule in Andrew's Toad ( Bufo andrewsi). BIOLOGY 2022; 11:biology11121766. [PMID: 36552274 PMCID: PMC9775554 DOI: 10.3390/biology11121766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Environmental variation likely modifies the life-history traits of vertebrates. As ectothermic vertebrates, it is possible that the body size of amphibians is impacted by environmental conditions. Here, we firstly quantified age and body size variation in the Andrew's toad (Bufo andrewsi) across the Hengduan Mountains. Then, we examined the environmental correlates of this variation based on the literature and our unpublished data on the age and body size of the Andrew's toad from 31 populations distributed in southwestern China. Although our analysis revealed significant variations in age and body size across B. andrewsi populations, neither latitude nor altitude correlated with this variability in age and body size. We found that age at sexual maturity, mean age, and longevity increased with decreasing annual mean temperature, whereas age at sexual maturity increased with decreasing temperature seasonality, implying that temperature was a crucial habitat characteristic that modulated age structure traits. Moreover, we revealed positive associations between age structure and UV-B seasonality, and negative relationships between both mean age and longevity and precipitation seasonality. We also found that body size increased with increasing precipitation in the driest month and UV-B seasonality. However, body size did not covary with temperature, signifying no support for Bergmann's rule. These findings help us to understand amphibians' abilities to adapt to environmental variation, which is particularly important in order to provide a theorical basis for their conservation.
Collapse
|
5
|
Zhu X, Chen C, Jiang Y, Zhao L, Jin L. Geographical variation of organ size in Andrew’s toad (Bufo andrewsi). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.972942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenotypic variation of morphological and physiological traits is assumed to be generated from spatial heterogeneity in environments, and it has been regarded as an important concern domain in evolutionary biology. Organs display markedly size variation among populations along environmental gradients and this variation is associated with changes in oxygen supply and energy demands. Here, we investigated geographical variation in the relative size of organs (i.e., brain, heart, lung, gallbladder, livers, spleen, kidneys, and digestive tract) among 14 populations of Andrew’s toad (Bufo andrewsi) transcending an elevational range from 864 to 2,367 m, and spanning 8° latitude. We found that although the relative sizes of the eight specific organs varied significantly among populations, none organ size was affected by altitude and latitude. However, based on the combined the new data and published data we found a negative relationship between the relative size of the heart and latitude, contrasting to the Hesse’s rule. We also found that the relative size of livers was positively linked to latitude, suggesting that more energy demands and intakes due to slower metabolism in high latitude shaped the evolution of larger livers.
Collapse
|
6
|
Yang YJ, Jiang Y, Mi ZP, Liao WB. Testing the Role of Environmental Harshness and Sexual Selection in Limb Muscle Mass in Anurans. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism is regarded as the consequence of differential responses by males and females to selection pressures. Limb muscle plays a very important role during amplexus, which is likely to be under both natural and sexual selection in anurans. Here, we studied the effects of natural and sexual selection on limb muscle mass in males and females across 64 species of anurans. The results showed that there were non-significant differences in relative limb muscle mass between the sexes among species, exhibiting no sexual dimorphism in limb muscle. Absolute and relative limb muscle mass positively displayed correlations with snout-vent length (SVL)for both sexes. However, neither male-biased operational sex ratio (OSR) nor environmental harshness [e.g., coefficient of variation (CV) in temperature and CV in rainfall] can explain relative limb muscle mass (e.g., forelimb, hindlimb, and total limb muscle) within each sex. The findings suggest that environmental harshness and sexual selection cannot play important roles in promoting variations in limb muscle among anuran species.
Collapse
|
7
|
Jiang Y, Chen C, Liao W. Anuran interorbital distance variation: the role of ecological and behavioral factors. Integr Zool 2022; 17:777-786. [PMID: 35512218 DOI: 10.1111/1749-4877.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eye position varies significantly among taxonomic levels, and this variation is often shaped by ecological and behavioral factors. Eye position is often positively associated with interorbital distance where species with broad visual fields possess a large distance between the left and right eye. Selective pressures underlying the evolution of the eye position are especially studied in birds and mammals. However, selective pressures underling the evolution of anuran eye position which can be indicated by interorbital distance keep unknown. Here, we investigated the effects of ecological (e.g., habitat type, light availability) and behavioral factors (e.g., activity pattern, foraging mobility, and defensive strategy) on variations in interorbital distance among 260 anuran species in China. Our results showed that variations of the interorbital distance can be significantly predicted by the activity pattern. Nocturnal species had larger interorbital distance than both nocturnal and diurnal species. We also found that foraging mobility and defensive strategy affected markedly variation of interorbital distance. Species having slower foraging mobility and possessing poison glands had larger interorbital distance than species having faster foraging mobility and possessing non-position glands. Light availability tended to be associated with variation of interorbital distance, indicating that species living weak light tending to possess larger interorbital distance. However, variations of the interorbital space were not associated with habitat type in anurans. Our findings suggest that anuran behaviors play key roles in shaping visual fields and eye position, and thus affecting the evolution of interorbital distance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, China.,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, China
| | - Chuan Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, China.,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, China.,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, China
| |
Collapse
|