1
|
Cardona AH, Peixoto MM, Borjigin T, Gregor T. Bridging spatial and temporal scales of developmental gene regulation. Curr Opin Genet Dev 2025; 92:102328. [PMID: 40080917 DOI: 10.1016/j.gde.2025.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
The development of multicellular organisms relies on the precise coordination of molecular events across multiple spatial and temporal scales. Understanding how information flows from molecular interactions to cellular processes and tissue organization during development is crucial for explaining the remarkable reproducibility of complex organisms. This review explores how chromatin-encoded information is transduced from localized transcriptional events to global gene expression patterns, highlighting the challenge of bridging these scales. We discuss recent experimental findings and theoretical frameworks, emphasizing polymer physics as a tool for describing the relationship between chromatin structure and dynamics across scales. By integrating these perspectives, we aim to clarify how gene regulation is coordinated across levels of biological organization and suggest strategies for future experimental approaches.
Collapse
Affiliation(s)
- Andrés H Cardona
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Márcia M Peixoto
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Tohn Borjigin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
2
|
Cardona AH, Peixoto MM, Borjigin T, Gregor T. Bridging spatial and temporal scales of developmental gene regulation. ARXIV 2025:arXiv:2501.16799v1. [PMID: 39975433 PMCID: PMC11838700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The development of multicellular organisms relies on the precise coordination of molecular events across multiple spatial and temporal scales. Understanding how information flows from molecular interactions to cellular processes and tissue organization during development is crucial for explaining the remarkable reproducibility of complex organisms. This review explores how chromatin-encoded information is transduced from localized transcriptional events to global gene expression patterns, highlighting the challenge of bridging these scales. We discuss recent experimental findings and theoretical frameworks, emphasizing polymer physics as a tool for describing the relationship between chromatin structure and dynamics across scales. By integrating these perspectives, we aim to clarify how gene regulation is coordinated across levels of biological organization and suggest strategies for future experimental approaches.
Collapse
Affiliation(s)
- Andrés H. Cardona
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Márcia Mesquita Peixoto
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Tohn Borjigin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Guha S, Mitra MK. Multivalent binding proteins can drive collapse and reswelling of chromatin in confinement. SOFT MATTER 2022; 19:153-163. [PMID: 36484149 DOI: 10.1039/d2sm00612j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Collapsed conformations of chromatin have been long suspected of being mediated by interactions with multivalent binding proteins, which can bring together distant sections of the chromatin fiber. In this study, we use Langevin dynamics simulation of a coarse grained chromatin polymer to show that the role of binding proteins can be more nuanced than previously suspected. In particular, for chromatin polymer in confinement, entropic forces can drive reswelling of collapsed chromatin with increasing binder concentrations, and this reswelling transition happens at physiologically relevant binder concentrations. Both the extent of collapse, and also of reswelling depends on the strength of confinement. We also study the kinetics of collapse and reswelling and show that both processes occur in similar timescales. We characterise this reswelling of chromatin in biologically relevant regimes and discuss the non-trivial role of multivalent binding proteins in mediating the spatial organisation of the genome.
Collapse
Affiliation(s)
- Sougata Guha
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
5
|
Kwon S, Sung BJ. History-dependent nonequilibrium conformations of a highly confined polymer globule in a sphere. Phys Rev E 2020; 102:022501. [PMID: 32942375 DOI: 10.1103/physreve.102.022501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 11/07/2022]
Abstract
Chromatin undergoes condensation-decondensation processes repeatedly during its cell lifetime. The spatial organization of chromatin in nucleus resembles the fractal globule, of which structure significantly differs from an equilibrium polymer globule. There have been efforts to develop a polymer globule model to describe the fractal globulelike structure of tightly packed chromatin in nucleus. However, the transition pathway of a polymer toward a globular state has been often ignored. Because biological systems are intrinsically in nonequilibrium states, the transition pathway that the chromatin would take before reaching the densely packaged globule should be of importance. In this study, by employing a simple polymer model and Langevin dynamics simulations, we investigate the conformational transition of a single polymer from a swollen coil to a compact globule. We aim to elucidate the effect of transition pathways on the final globular structure. We show that a fast collapse induces a nonequilibrium structure even without a specific intramolecular interaction and that its relaxation toward an equilibrium globule is extremely slow. Due to a strong confinement, the fractal globule never relaxes into an equilibrium state during our simulations such that the globular structure becomes dependent on the transition pathway.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| |
Collapse
|
6
|
Dawson WK, Lazniewski M, Plewczynski D. Free energy-based model of CTCF-mediated chromatin looping in the human genome. Methods 2020; 181-182:35-51. [PMID: 32645447 DOI: 10.1016/j.ymeth.2020.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 04/21/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022] Open
Abstract
In recent years, high-throughput techniques have revealed considerable structural organization of the human genome with diverse regions of the chromatin interacting with each other in the form of loops. Some of these loops are quite complex and may encompass regions comprised of many interacting chain segments around a central locus. Popular techniques for extracting this information are chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and high-throughput chromosome conformation capture (Hi-C). Here, we introduce a physics-based method to predict the three-dimensional structure of chromatin from population-averaged ChIA-PET data. The approach uses experimentally-validated data from human B-lymphoblastoid cells to generate 2D meta-structures of chromatin using a dynamic programming algorithm that explores the chromatin free energy landscape. By generating both optimal and suboptimal meta-structures we can calculate both the free energy and additionally the relative thermodynamic probability. A 3D structure prediction program with applied restraints then can be used to generate the tertiary structures. The main advantage of this approach for population-averaged experimental data is that it provides a way to distinguish between the principal and the spurious contacts. This study also finds that euchromatin appear to have rather precisely regulated 2D meta-structures compared to heterochromatin. The program source-code is available at https://github.com/plewczynski/looper.
Collapse
Affiliation(s)
- Wayne K Dawson
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-089, Poland; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 103-8657, Japan.
| | - Michal Lazniewski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-089, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-089, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
7
|
Sarnataro S, Chiariello AM, Esposito A, Prisco A, Nicodemi M. Structure of the human chromosome interaction network. PLoS One 2017; 12:e0188201. [PMID: 29141034 PMCID: PMC5687706 DOI: 10.1371/journal.pone.0188201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022] Open
Abstract
New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.
Collapse
Affiliation(s)
- Sergio Sarnataro
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
| | - Andrea M. Chiariello
- Dipartimento di Fisica, Universitá di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Universitá di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Mario Nicodemi
- Dipartimento di Fisica, Universitá di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
8
|
Chiariello AM, Esposito A, Annunziatella C, Bianco S, Fiorillo L, Prisco A, Nicodemi M. A Polymer Physics Investigation of the Architecture of the Murine Orthologue of the 7q11.23 Human Locus. Front Neurosci 2017; 11:559. [PMID: 29066944 PMCID: PMC5641313 DOI: 10.3389/fnins.2017.00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
In the last decade, the developments of novel technologies, such as Hi-C or GAM methods, allowed to discover that chromosomes in the nucleus of mammalian cells have a complex spatial organization, encompassing the functional contacts between genes and regulators. In this work, we review recent progresses in chromosome modeling based on polymer physics to understand chromatin structure and folding mechanisms. As an example, we derive in mouse embryonic stem cells the full 3D structure of the Bmp7 locus, a genomic region that plays a key role in osteoblastic differentiation. Next, as an application to Neuroscience, we present the first 3D model for the mouse orthologoue of the Williams-Beuren syndrome 7q11.23 human locus. Deletions and duplications of the 7q11.23 region generate neurodevelopmental disorders with multi-system involvement and variable expressivity, and with autism. Understanding the impact of such mutations on the rewiring of the interactions of genes and regulators could be a new key to make sense of their related diseases, with potential applications in biomedicine.
Collapse
Affiliation(s)
- Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Antonella Prisco
- Institute of Genetics and Biophysics, Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Gao J, Yang X, Djekidel MN, Wang Y, Xi P, Zhang MQ. Developing bioimaging and quantitative methods to study 3D genome. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0065-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C. The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 2015; 589:2931-43. [PMID: 26028501 DOI: 10.1016/j.febslet.2015.05.037] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
Abstract
Recent methodological advancements in microscopy and DNA sequencing-based methods provide unprecedented new insights into the spatio-temporal relationships between chromatin and nuclear machineries. We discuss a model of the underlying functional nuclear organization derived mostly from electron and super-resolved fluorescence microscopy studies. It is based on two spatially co-aligned, active and inactive nuclear compartments (ANC and INC). The INC comprises the compact, transcriptionally inactive core of chromatin domain clusters (CDCs). The ANC is formed by the transcriptionally active periphery of CDCs, called the perichromatin region (PR), and the interchromatin compartment (IC). The IC is connected to nuclear pores and serves nuclear import and export functions. The ANC is the major site of RNA synthesis. It is highly enriched in epigenetic marks for transcriptionally competent chromatin and RNA Polymerase II. Marks for silent chromatin are enriched in the INC. Multi-scale cross-correlation spectroscopy suggests that nuclear architecture resembles a random obstacle network for diffusing proteins. An increased dwell time of proteins and protein complexes within the ANC may help to limit genome scanning by factors or factor complexes to DNA exposed within the ANC.
Collapse
Affiliation(s)
- Thomas Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany.
| | - Marion Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Barbara Hübner
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Hilmar Strickfaden
- University of Alberta, Cross Cancer Institute Dept. of Oncology, Edmonton, AB, Canada
| | - Daniel Smeets
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Jens Popken
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Michael Sterr
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Yolanda Markaki
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) & BioQuant Center, Research Group Genome Organization & Function, Heidelberg, Germany.
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), Mainz and Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany.
| |
Collapse
|
11
|
Scolari VF, Cosentino Lagomarsino M. Combined collapse by bridging and self-adhesion in a prototypical polymer model inspired by the bacterial nucleoid. SOFT MATTER 2015; 11:1677-1687. [PMID: 25532064 DOI: 10.1039/c4sm02434f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent experimental results suggest that the E. coli chromosome feels a self-attracting interaction of osmotic origin, and is condensed in foci by bridging interactions. Motivated by these findings, we explore a generic modeling framework combining solely these two ingredients, in order to characterize their joint effects. Specifically, we study a simple polymer physics computational model with weak ubiquitous short-ranged self attraction and stronger sparse bridging interactions. Combining theoretical arguments and simulations, we study the general phenomenology of polymer collapse induced by these dual contributions, in the case of regularly spaced bridging. Our results distinguish a regime of classical Flory-like coil-globule collapse dictated by the interplay of excluded volume and attractive energy and a switch-like collapse where bridging interactions compete with entropy loss terms from the looped arms of a star-like rosette. Additionally, we show that bridging can induce stable compartmentalized domains. In these configurations, different "cores" of bridging proteins are kept separated by star-like polymer loops in an entropically favorable multi-domain configuration, with a mechanism that parallels micellar polysoaps. Such compartmentalized domains are stable, and do not need any intra-specific interactions driving their segregation. Domains can be stable also in the presence of uniform attraction, as long as the uniform collapse is above its theta point.
Collapse
Affiliation(s)
- Vittore F Scolari
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 15 rue de l'École de Médecine Paris, France.
| | | |
Collapse
|
12
|
Helliwell CA, Anderssen RS, Robertson M, Finnegan EJ. How is FLC repression initiated by cold? TRENDS IN PLANT SCIENCE 2015; 20:76-82. [PMID: 25600480 DOI: 10.1016/j.tplants.2014.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 05/07/2023]
Abstract
Vernalization is the promotion of flowering in response to prolonged exposure to low temperatures. In Arabidopsis, FLOWERING LOCUS C (FLC), a suppressor of flowering, is repressed by low temperatures but the mechanism leading to the initial decrease in FLC transcription remains a mystery. No mutants that block the repression of FLC at low temperatures have been identified to date. If the failure to identify such a mutant is assumed to imply that no such mutant exists, then it follows that the first response to the drop in temperature is physical, not genetic. In this Opinion article we propose that the drop in temperature first causes a simple change in the topology of the chromatin polymer, which in turn initiates the repression of FLC transcription.
Collapse
Affiliation(s)
- Chris A Helliwell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia
| | | | - Masumi Robertson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia
| | - E Jean Finnegan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia.
| |
Collapse
|