1
|
Le Rouzic A, Roumet M, Widmer A, Clo J. Detecting directional epistasis and dominance from cross-line analyses in alpine populations of Arabidopsis thaliana. J Evol Biol 2024; 37:839-847. [PMID: 38712591 DOI: 10.1093/jeb/voae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The contribution of non-additive genetic effects to the genetic architecture of fitness and to the evolutionary potential of populations has been a topic of theoretical and empirical interest for a long time. Yet, the empirical study of these effects in natural populations remains scarce, perhaps because measuring dominance and epistasis relies heavily on experimental line crosses. In this study, we explored the contribution of dominance and epistasis in natural alpine populations of Arabidopsis thaliana for 2 fitness traits, the dry biomass and the estimated number of siliques, measured in a greenhouse. We found that, on average, crosses between inbred lines of A. thaliana led to mid-parent heterosis for dry biomass but outbreeding depression for an estimated number of siliques. While heterosis for dry biomass was due to dominance, we found that outbreeding depression for an estimated number of siliques could be attributed to the breakdown of beneficial epistatic interactions. We simulated and discussed the implication of these results for the adaptive potential of the studied populations, as well as the use of line-cross analyses to detect non-additive genetic effects.
Collapse
Affiliation(s)
- Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, Gif-Sur-Yvette, France
| | - Marie Roumet
- CTU Bern, University of Bern, Bern, Switzerland
- Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland
| | - Josselin Clo
- CNRS, University of Lille, UMR 8198-Evo-Eco-Paleo, Lille, France
| |
Collapse
|
2
|
Rio S, Charcosset A, Moreau L, Mary-Huard T. Detecting directional and non-directional epistasis in bi-parental populations using genomic data. Genetics 2023; 224:iyad089. [PMID: 37170627 DOI: 10.1093/genetics/iyad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/16/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
Epistasis, commonly defined as interaction effects between alleles of different loci, is an important genetic component of the variation of phenotypic traits in natural and breeding populations. In addition to its impact on variance, epistasis can also affect the expected performance of a population and is then referred to as directional epistasis. Before the advent of genomic data, the existence of epistasis (both directional and non-directional) was investigated based on complex and expensive mating schemes involving several generations evaluated for a trait of interest. In this study, we propose a methodology to detect the presence of epistasis based on simple inbred biparental populations, both genotyped and phenotyped, ideally along with their parents. Thanks to genomic data, parental proportions as well as shared parental proportions between inbred individuals can be estimated. They allow the evaluation of epistasis through a test of the expected performance for directional epistasis or the variance of genetic values. This methodology was applied to two large multiparental populations, i.e. the American maize and soybean nested association mapping populations, evaluated for different traits. Results showed significant epistasis, especially for the test of directional epistasis, e.g. the increase in anthesis to silking interval observed in most maize inbred progenies or the decrease in grain yield observed in several soybean inbred progenies. In general, the effects detected suggested that shuffling allelic associations of both elite parents had a detrimental effect on the performance of their progeny. This methodology is implemented in the EpiTest R-package and can be applied to any bi/multiparental inbred population evaluated for a trait of interest.
Collapse
Affiliation(s)
- Simon Rio
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Alain Charcosset
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Tristan Mary-Huard
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91190 Gif-sur-Yvette, France
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 91120 Palaiseau, France
| |
Collapse
|
3
|
Clo J. Polyploidization: Consequences of genome doubling on the evolutionary potential of populations. AMERICAN JOURNAL OF BOTANY 2022; 109:1213-1220. [PMID: 35862788 DOI: 10.1002/ajb2.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Whole-genome duplication is common in plants and is considered to have a broad range of effects on individuals' phenotypes and genomes and to be an important driver of plant adaptation and speciation. Despite their increased capacity to cope with challenging environments, polyploid lineages are generally as prone to extinction, and sometimes more prone, than their diploid progenitors. Although several explanations have been proposed to explain the short- and long-term disadvantages of polyploidy on the survival probability of populations, the consequences of whole-genome doubling on the heritable variance remain poorly studied. Whole-genome doubling can have major effects not only on the genetics, but also on the ecology and life history of the populations. Modifications of other properties of populations can reverse the effects of polyploidization per se on heritable variance. In this synthesis, I summarize the empirical and theoretical knowledge about the multifarious consequences of genome doubling on the heritable variance of quantitative traits and on the evolutionary potential of polyploid populations compared to their diploid progenitors. I propose several ways to decipher the consequences of whole-genome doubling on survival probability and to study the further consequences of shifting the ecological niche and life-history traits of a population. I also highlight some practical considerations for comparing the heritable variance of a trait among different cytotypes. Such investigations appear to be timely and necessary to understand more about the paradoxical aspects of polyploidization and to understand the evolutionary potential of polyploid lineages in a global warming context.
Collapse
Affiliation(s)
- Josselin Clo
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01, Prague, Czech Republic
| |
Collapse
|
4
|
Hansen TF, Pélabon C. Evolvability: A Quantitative-Genetics Perspective. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011121-021241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The concept of evolvability emerged in the early 1990s and soon became fashionable as a label for different streams of research in evolutionary biology. In evolutionary quantitative genetics, evolvability is defined as the ability of a population to respond to directional selection. This differs from other fields by treating evolvability as a property of populations rather than organisms or lineages and in being focused on quantification and short-term prediction rather than on macroevolution. While the term evolvability is new to quantitative genetics, many of the associated ideas and research questions have been with the field from its inception as biometry. Recent research on evolvability is more than a relabeling of old questions, however. New operational measures of evolvability have opened possibilities for understanding adaptation to rapid environmental change, assessing genetic constraints, and linking micro- and macroevolution.
Collapse
Affiliation(s)
- Thomas F. Hansen
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Christophe Pélabon
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
5
|
Pélabon C, Albertsen E, Rouzic AL, Firmat C, Bolstad GH, Armbruster WS, Hansen TF. Quantitative assessment of observed versus predicted responses to selection. Evolution 2021; 75:2217-2236. [PMID: 34137027 DOI: 10.1111/evo.14284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 03/26/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Although artificial-selection experiments seem well suited to testing our ability to predict evolution, the correspondence between predicted and observed responses is often ambiguous due to the lack of uncertainty estimates. We present equations for assessing prediction error in direct and indirect responses to selection that integrate uncertainty in genetic parameters used for prediction and sampling effects during selection. Using these, we analyzed a selection experiment on floral traits replicated in two taxa of the Dalechampia scandens (Euphorbiaceae) species complex for which G-matrices were obtained from a diallel breeding design. After four episodes of bidirectional selection, direct and indirect responses remained within wide prediction intervals, but appeared different from the predictions. Combined analyses with structural-equation models confirmed that responses were asymmetrical and lower than predicted in both species. We show that genetic drift is likely to be a dominant source of uncertainty in typically-dimensioned selection experiments in plants and a major obstacle to predicting short-term evolutionary trajectories.
Collapse
Affiliation(s)
- Christophe Pélabon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elena Albertsen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Arnaud Le Rouzic
- Évolution, Génomes, Comportement, Écologie, Université Paris-Saclay CNRS-IRD, Gif sur Yvette, France
| | - Cyril Firmat
- INRAE, Université de Toulouse, UMR AGIR, Castanet-Tolosan Cedex, France
| | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK.,Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA
| | - Thomas F Hansen
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Clo J, Ronfort J, Abu Awad D. Hidden genetic variance contributes to increase the short-term adaptive potential of selfing populations. J Evol Biol 2020; 33:1203-1215. [PMID: 32516463 DOI: 10.1111/jeb.13660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022]
Abstract
Standing genetic variation is considered a major contributor to the adaptive potential of species. The low heritable genetic variation observed in self-fertilizing populations has led to the hypothesis that species with this mating system would be less likely to adapt. However, a non-negligible amount of cryptic genetic variation for polygenic traits, accumulated through negative linkage disequilibrium, could prove to be an important source of standing variation in self-fertilizing species. To test this hypothesis, we simulated populations under stabilizing selection subjected to an environmental change. We demonstrate that, when the mutation rate is high (but realistic), selfing populations are better able to store genetic variance than outcrossing populations through genetic associations, notably due to the reduced effective recombination rate associated with predominant selfing. Following an environmental shift, this diversity can be partially remobilized, which increases the additive variance and adaptive potential of predominantly (but not completely) selfing populations. In such conditions, despite initially lower observed genetic variance, selfing populations adapt as readily as outcrossing ones within a few generations. For low mutation rates, purifying selection impedes the storage of diversity through genetic associations, in which case, as previously predicted, the lower genetic variance of selfing populations results in lower adaptability compared to their outcrossing counterparts. The population size and the mutation rate are the main parameters to consider, as they are the best predictors of the amount of stored diversity in selfing populations. Our results and their impact on our knowledge of adaptation under high selfing rates are discussed.
Collapse
Affiliation(s)
- Josselin Clo
- AGAP, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Joëlle Ronfort
- AGAP, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Diala Abu Awad
- AGAP, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France.,Department of Population Genetics, Technische Universität München, Freising, Germany
| |
Collapse
|
7
|
Chirgwin E, Marshall DJ, Sgrò CM, Monro K. How does parental environment influence the potential for adaptation to global change? Proc Biol Sci 2018; 285:20181374. [PMID: 30209227 PMCID: PMC6158540 DOI: 10.1098/rspb.2018.1374] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/23/2018] [Indexed: 02/01/2023] Open
Abstract
Parental environments are regularly shown to alter the mean fitness of offspring, but their impacts on the genetic variation for fitness, which predicts adaptive capacity and is also measured on offspring, are unclear. Consequently, how parental environments mediate adaptation to environmental stressors, like those accompanying global change, is largely unknown. Here, using an ecologically important marine tubeworm in a quantitative-genetic breeding design, we tested how parental exposure to projected ocean warming alters the mean survival, and genetic variation for survival, of offspring during their most vulnerable life stage under current and projected temperatures. Offspring survival was higher when parent and offspring temperatures matched. Across offspring temperatures, parental exposure to warming altered the distribution of additive genetic variance for survival, making it covary across current and projected temperatures in a way that may aid adaptation to future warming. Parental exposure to warming also amplified nonadditive genetic variance for survival, suggesting that compatibilities between parental genomes may grow increasingly important under future warming. Our study shows that parental environments potentially have broader-ranging effects on adaptive capacity than currently appreciated, not only mitigating the negative impacts of global change but also reshaping the raw fuel for evolutionary responses to it.
Collapse
Affiliation(s)
- Evatt Chirgwin
- Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Keyne Monro
- Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
8
|
Durand E, Tenaillon MI, Raffoux X, Thépot S, Falque M, Jamin P, Bourgais A, Ressayre A, Dillmann C. Dearth of polymorphism associated with a sustained response to selection for flowering time in maize. BMC Evol Biol 2015; 15:103. [PMID: 26049736 PMCID: PMC4458035 DOI: 10.1186/s12862-015-0382-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/18/2015] [Indexed: 12/25/2022] Open
Abstract
Background Long term selection experiments bring unique insights on the genetic architecture of quantitative traits and their evolvability. Indeed, they are utilized to (i) monitor changes in allele frequencies and assess the effects of genomic regions involved traits determinism; (ii) evaluate the role of standing variation versus new mutations during adaptation; (iii) investigate the contribution of non allelic interactions. Here we describe genetic and phenotypic evolution of two independent Divergent Selection Experiments (DSEs) for flowering time conducted during 16 years from two early maize inbred lines. Results Our experimental design uses selfing as the mating system and small population sizes, so that two independent families evolved within each population, Late and Early. Observed patterns are strikingly similar between the two DSEs. We observed a significant response to selection in both directions during the first 7 generations of selection. Within Early families, the response is linear through 16 generations, consistent with the maintenance of genetic variance. Within Late families and despite maintenance of significant genetic variation across 17 generations, the response to selection reached a plateau after 7 generations. This plateau is likely caused by physiological limits. Residual heterozygosity in the initial inbreds can partly explain the observed responses as evidenced by 42 markers derived from both Methyl-Sensitive Amplification- and Amplified Fragment Length- Polymorphisms. Among the 42, a subset of 13 markers most of which are in high linkage disequilibrium, display a strong association with flowering time variation. Their fast fixation throughout DSEs’ pedigrees results in strong genetic differentiation between populations and families. Conclusions Our results reveal a paradox between the sustainability of the response to selection and the associated dearth of polymorphisms. Among other hypotheses, we discuss the maintenance of heritable variation by few mutations with strong epistatic interactions whose effects are modified by continuous changes of the genetic background through time. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0382-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eleonore Durand
- INRA, Ferme du Moulon, Gif sur Yvette, 91190, France. .,CNRS, Ferme du Moulon, Gif sur Yvette, 91190, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Monnahan PJ, Kelly JK. Epistasis Is a Major Determinant of the Additive Genetic Variance in Mimulus guttatus. PLoS Genet 2015; 11:e1005201. [PMID: 25946702 PMCID: PMC4422649 DOI: 10.1371/journal.pgen.1005201] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/08/2015] [Indexed: 11/21/2022] Open
Abstract
The influence of genetic interactions (epistasis) on the genetic variance of quantitative traits is a major unresolved problem relevant to medical, agricultural, and evolutionary genetics. The additive genetic component is typically a high proportion of the total genetic variance in quantitative traits, despite that underlying genes must interact to determine phenotype. This study estimates direct and interaction effects for 11 pairs of Quantitative Trait Loci (QTLs) affecting floral traits within a single population of Mimulus guttatus. With estimates of all 9 genotypes for each QTL pair, we are able to map from QTL effects to variance components as a function of population allele frequencies, and thus predict changes in variance components as allele frequencies change. This mapping requires an analytical framework that properly accounts for bias introduced by estimation errors. We find that even with abundant interactions between QTLs, most of the genetic variance is likely to be additive. However, the strong dependency of allelic average effects on genetic background implies that epistasis is a major determinant of the additive genetic variance, and thus, the population’s ability to respond to selection. Complex traits are influenced not only by the effects of individual genes but also by the myriad ways that these genes interact with one another, commonly referred to as epistasis. Theory suggests that epistasis could have important population-level implications in terms of the genetic variance components that govern evolution in response to natural or artificial selection. Unfortunately, empirical examples extending from observed interactions between genes to genetic variances are scant, particularly for natural populations. Here, we characterize epistasis between naturally segregating polymorphisms in M. guttatus and determine the cumulative effect of epistasis on population genetic variance components. To do this, we first elaborate the necessary statistical theory to accommodate estimation error in genetic effects, as failing to do so will upwardly bias variance predictions. We find that gene interactions have a net positive effect on both the total and additive genetic variance for most traits; however, the contribution of individual loci to the additive variance depends heavily on the genotype frequencies at other loci. Therefore, the effect of epistasis extends beyond the individual’s phenotype to influence how both populations and their component alleles respond to selection.
Collapse
Affiliation(s)
- Patrick J. Monnahan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Lawrence, Kansas, United States of America
- * E-mail:
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Lawrence, Kansas, United States of America
| |
Collapse
|
10
|
Álvarez-Castro JM. Corrigendum for "Dissecting genetic effects with imprinting". Front Genet 2014; 5:427. [PMID: 25583081 PMCID: PMC4259164 DOI: 10.3389/fgene.2014.00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fevo.2014.00051.][This corrects the article on p. 198 in vol. 5, PMID: 25071828.].
Collapse
|
11
|
Álvarez-Castro JM, Yang RC. One century later: dissecting genetic effects for looking over old paradigms. Front Genet 2014; 5:396. [PMID: 25429301 PMCID: PMC4228978 DOI: 10.3389/fgene.2014.00396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
| | - Rong-Cai Yang
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|