1
|
Schuch JB, Bandeira CE, Junior JLS, Müller D, Charão MF, da Silva BS, Grevet EH, Kessler FHP, von Diemen L, Rovaris DL, Bau CHD. Global DNA methylation patterns in Alcohol Use Disorder. Genet Mol Biol 2024; 46:e20230139. [PMID: 38197733 PMCID: PMC10778554 DOI: 10.1590/1678-4685-gmb-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a highly prevalent condition worldwide that produces a wide range of pathophysiological consequences, with a critical impact on health and social issues. Alcohol influences gene expression through epigenetic changes mainly through DNA methylation. In this sense, levels of 5-methylcytosine (5-mC), namely Global DNA methylation (GMe), which can be influenced by environmental and hormonal effects, represent a putative biological mechanism underlying alcohol effects. Our aim was to investigate the influence of AUD diagnosis and alcohol patterns (i.e., years of addiction, use in the last 30 days, and alcohol severity) on GMe levels. The sample consisted of 256 men diagnosed with AUD and 361 men without AUD. DNA samples from peripheral blood were used to assess GMe levels, measured through the levels of 5-mC using high-performance liquid chromatography. Results from multiple linear regression analysis indicated that the presence of AUD was associated with lower GMe levels (beta=-0.155, p=0.011). Other alcohol-related outcomes were not associated with DNA methylation. Our findings are consistent with the hypothesis that the impact of chronic and heavy alcohol use in GMe could be a potential mechanism mediating the multiple organ damages related to AUD.
Collapse
Affiliation(s)
- Jaqueline B. Schuch
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa em Álcool e Drogas, Porto Alegre, RS, Brazil
| | - Cibele E. Bandeira
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brazil
| | - Jorge L. S. Junior
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Diana Müller
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
| | - Mariele F. Charão
- Universidade Feevale, Programa de Pós-Graduação em Toxicologia e Análises Toxicológicas, Novo Hamburgo, RS, Brazil
| | - Bruna S. da Silva
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brazil
| | - Eugenio H. Grevet
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
| | - Felix H. P. Kessler
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa em Álcool e Drogas, Porto Alegre, RS, Brazil
| | - Lisia von Diemen
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa em Álcool e Drogas, Porto Alegre, RS, Brazil
| | - Diego L. Rovaris
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brazil
| | - Claiton H. D. Bau
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Mennickent D, Rodríguez A, Opazo MC, Riedel CA, Castro E, Eriz-Salinas A, Appel-Rubio J, Aguayo C, Damiano AE, Guzmán-Gutiérrez E, Araya J. Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications. Front Endocrinol (Lausanne) 2023; 14:1130139. [PMID: 37274341 PMCID: PMC10235786 DOI: 10.3389/fendo.2023.1130139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology. Aim To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications. Methodology Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. Current state ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used. Future challenges To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models. Conclusion The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.
Collapse
Affiliation(s)
- Daniela Mennickent
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
| | - Andrés Rodríguez
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Ma. Cecilia Opazo
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Erica Castro
- Departamento de Obstetricia y Puericultura, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Alma Eriz-Salinas
- Departamento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Javiera Appel-Rubio
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Claudio Aguayo
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Alicia E. Damiano
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay)- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Enrique Guzmán-Gutiérrez
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
| | - Juan Araya
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
| |
Collapse
|
3
|
Mishra NK, Shrinath P, Rao R, Shukla PK. Sex-Specific Whole-Transcriptome Analysis in the Cerebral Cortex of FAE Offspring. Cells 2023; 12:328. [PMID: 36672262 PMCID: PMC9856965 DOI: 10.3390/cells12020328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are associated with systemic inflammation and neurodevelopmental abnormalities. Several candidate genes were found to be associated with fetal alcohol exposure (FAE)-associated behaviors, but a sex-specific complete transcriptomic analysis was not performed at the adult stage. Recent studies have shown that they are regulated at the developmental stage. However, the sex-specific role of RNA in FAE offspring brain development and function has not been studied yet. Here, we carried out the first systematic RNA profiling by utilizing a high-throughput transcriptomic (RNA-seq) approach in response to FAE in the brain cortex of male and female offspring at adulthood (P60). Our RNA-seq data analysis suggests that the changes in RNA expression in response to FAE are marked sex-specific. We show that the genes Muc3a, Pttg1, Rec8, Clcnka, Capn11, and pnp2 exhibit significantly higher expression in the male offspring than in the female offspring at P60. FAE female mouse brain sequencing data also show an increased expression of Eno1, Tpm3, and Pcdhb2 compared to male offspring. We performed a pathway analysis using a commercial software package (Ingenuity Pathway Analysis). We found that the sex-specific top regulator genes (Rictor, Gaba, Fmri, Mlxipl) are highly associated with eIF2 (translation initiation), synaptogenesis (the formation of synapses between neurons in the nervous system), sirtuin (metabolic regulation), and estrogen receptor (involved in obesity, aging, and cancer) signaling. Taken together, our transcriptomic results demonstrate that FAE differentially alters RNA expression in the adult brain in a sex-specific manner.
Collapse
Affiliation(s)
- Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Pulastya Shrinath
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Radhakrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pradeep K. Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Huang W, Yuan Z, Gu H. Exploring epigenomic mechanisms of neural tube defects using multi-omics methods and data. Ann N Y Acad Sci 2022; 1515:50-60. [PMID: 35666948 DOI: 10.1111/nyas.14802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neural tube defects (NTDs) are a heterogeneous set of malformations attributed to disruption in normal neural tube closure during early embryogenesis. An in-depth understanding of NTD etiology and mechanisms remains elusive, however. Among the proposed mechanisms, epigenetic changes are thought to play an important role in the formation of NTDs. Epigenomics covers a wide spectrum of genomic DNA sequence modifications that can be investigated via high-throughput techniques. Recent advances in epigenomic technologies have enabled epigenetic studies of congenital malformations and facilitated the integration of big data into the understanding of NTDs. Herein, we review clinical epigenomic data that focuses on DNA methylation, histone modification, and miRNA alterations in human neural tissues, placental tissues, and leukocytes to explore potential mechanisms by which candidate genes affect human NTD pathogenesis. We discuss the links between epigenomics and gene regulatory mechanisms, and the effects of epigenetic alterations in human tissues on neural tube closure.
Collapse
Affiliation(s)
- Wanqi Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli M, Vitali M, De Persis S, Greco A, Minni A, Polimeni A, Ceccanti M, Petrella C, Fiore M. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models. Curr Neuropharmacol 2022; 20:1158-1173. [PMID: 34720083 PMCID: PMC9886817 DOI: 10.2174/1570159x19666211101111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, “Sapienza” University of Rome, Rome, Italy
| | | | - Marco Lucarelli
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | | | | | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy; E-mail:
| |
Collapse
|
7
|
Carugati M, Goodlett CR, Cudd TA, Washburn SE. The effects of gestational choline supplementation on cerebellar Purkinje cell number in the sheep model of binge alcohol exposure during the first trimester-equivalent. Alcohol 2022; 100:11-21. [PMID: 35114358 PMCID: PMC8983574 DOI: 10.1016/j.alcohol.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Individuals with fetal alcohol spectrum disorders (FASD) incur enduring brain damage and neurodevelopmental impairments from prenatal alcohol exposure (PAE). Preclinical rodent models have demonstrated that choline supplementation during development can reduce the severity of adverse neurodevelopmental consequences of PAE. This study used the sheep model to evaluate dietary choline supplementation during pregnancy as a therapeutic intervention, testing the hypothesis that choline can ameliorate alcohol-induced cerebellar Purkinje cell loss. Pregnant ewes were randomly assigned either to a normal control [NC] group (n = 8), or to groups given intravenous infusions of alcohol (or saline) from gestational days 4-41 (the first trimester-equivalent). A weekly binge-drinking pattern was modeled, with three consecutive days of infusions of saline [SAL], 1.75 g/kg/day alcohol [1.75ALC], or 2.5 g/kg/day alcohol [2.5ALC] followed by four days off. Infused ewes were randomly assigned to receive dietary supplements throughout pregnancy of choline (10 mg/kg/day) or placebo (n = 8 per group). Mean blood alcohol concentrations (BAC) were significantly higher in the 2.5ALC groups (287 mg/dL) than the 1.75ALC groups (197 mg/dL). Lamb cerebella were harvested on postnatal day 180 and processed for stereological counts of Purkinje cells. Both alcohol doses caused significant reductions in Purkinje number relative to NC and SAL-Placebo groups, confirming previous findings. Effects of choline supplementation depended on infusion group: it significantly protected against Purkinje cell loss in the 2.5ALC group, had no effect in the 1.75ALC group, and significantly reduced numbers in the SAL-Choline group (though neither the SAL-Choline nor the SAL-Placebo group differed from the NC group). The protection by choline evident only in the 2.5ALC group suggests that multiple, BAC-dependent mechanisms of cerebellar damage may be activated with alcohol exposure in the first trimester, and that choline may protect against pathogenic mechanisms that emerge at higher BACs. These outcomes extend the evidence that early choline supplementation can mitigate some neurodevelopmental defects resulting from binge-like PAE.
Collapse
Affiliation(s)
- Megan Carugati
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Timothy A Cudd
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Shannon E Washburn
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States.
| |
Collapse
|
8
|
Piniewska-Róg D, Heidegger A, Pośpiech E, Xavier C, Pisarek A, Jarosz A, Woźniak A, Wojtas M, Phillips C, Kayser M, Parson W, Branicki W. Impact of excessive alcohol abuse on age prediction using the VISAGE enhanced tool for epigenetic age estimation in blood. Int J Legal Med 2021; 135:2209-2219. [PMID: 34405265 PMCID: PMC8523459 DOI: 10.1007/s00414-021-02665-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
DNA methylation-based clocks provide the most accurate age estimates with practical implications for clinical and forensic genetics. However, the effects of external factors that may influence the estimates are poorly studied. Here, we evaluated the effect of alcohol consumption on epigenetic age prediction in a cohort of extreme alcohol abusers. Blood samples from deceased alcohol abusers and age- and sex-matched controls were analyzed using the VISAGE enhanced tool for age prediction from somatic tissues that enables examination of 44 CpGs within eight age markers. Significantly altered DNA methylation was recorded for alcohol abusers in MIR29B2CHG. This resulted in a mean predicted age of 1.4 years higher compared to the controls and this trend increased in older individuals. The association of alcohol abuse with epigenetic age acceleration, as determined by the prediction analysis performed based on MIR29B2CHG, was small but significant (β = 0.190; P-value = 0.007). However, the observed alteration in DNA methylation of MIR29B2CHG had a non-significant effect on age estimation with the VISAGE age prediction model. The mean absolute error in the alcohol-abusing cohort was 3.1 years, compared to 3.3 years in the control group. At the same time, upregulation of MIR29B2CHG expression may have a biological function, which merits further studies.
Collapse
Affiliation(s)
- Danuta Piniewska-Róg
- Jagiellonian University Medical College, Faculty of Medicine, Department of Forensic Medicine, Grzegórzecka 16, 31-531, Krakow, Poland
| | - Antonia Heidegger
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020, Innsbruck, Austria
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-348, Krakow, Poland
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020, Innsbruck, Austria
| | - Aleksandra Pisarek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-348, Krakow, Poland
| | - Agata Jarosz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-348, Krakow, Poland
| | - Anna Woźniak
- Central Forensic Laboratory of the Police, Aleje Ujazdowskie 7, 00-583, Warsaw, Poland
| | - Marta Wojtas
- Jagiellonian University Medical College, Faculty of Medicine, Department of Forensic Medicine, Grzegórzecka 16, 31-531, Krakow, Poland
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782, Santiago de Compostela, Spain
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020, Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, 13 Thomas Building, University Park, PA, 16802, USA
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-348, Krakow, Poland.
- Central Forensic Laboratory of the Police, Aleje Ujazdowskie 7, 00-583, Warsaw, Poland.
| |
Collapse
|
9
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
10
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
11
|
Cantacorps L, Alfonso-Loeches S, Guerri C, Valverde O. Long-term epigenetic changes in offspring mice exposed to alcohol during gestation and lactation. J Psychopharmacol 2019; 33:1562-1572. [PMID: 31210079 DOI: 10.1177/0269881119856001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alcohol exposure impairs brain development and leads to a range of behavioural and cognitive dysfunctions, termed as foetal alcohol spectrum disorders. Although different mechanisms have been proposed to participate in foetal alcohol spectrum disorders, the molecular insights of such effects are still uncertain. Using a mouse model of foetal alcohol spectrum disorder, we have previously shown that maternal binge-like alcohol drinking causes persistent effects on motor, cognitive and emotional-related behaviours associated with neuroimmune dysfunctions. AIMS In this study, we sought to evaluate whether the long-term behavioural alterations found in offspring with early exposure to alcohol are associated with epigenetic changes in the hippocampus and prefrontal cortex. METHODS Pregnant C57BL/6 female mice underwent a model procedure for binge alcohol drinking throughout both the gestation and lactation periods. Subsequently, adult offspring were assessed for their cognitive function in a reversal learning task and brain areas were extracted for epigenetic analyses. RESULTS The results demonstrated that early binge alcohol exposure induces long-term behavioural effects along with alterations in histone acetylation (histone H4 lysine 5 and histone H4 lysine 12) in the hippocampus and prefrontal cortex. The epigenetic effects were linked with an imbalance in histone acetyltransferase activity that was found to be increased in the prefrontal cortex of mice exposed to alcohol. CONCLUSIONS In conclusion, our results reveal that maternal binge-like alcohol consumption induces persistent epigenetic modifications, effects that might be associated with the long-term cognitive and behavioural impairments observed in foetal alcohol spectrum disorder models.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Alfonso-Loeches
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Centre, Valencia, Spain
| | - Consuelo Guerri
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Centre, Valencia, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
12
|
Jarmasz JS, Stirton H, Basalah D, Davie JR, Clarren SK, Astley SJ, Del Bigio MR. Global DNA Methylation and Histone Posttranslational Modifications in Human and Nonhuman Primate Brain in Association with Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:1145-1162. [PMID: 31074890 PMCID: PMC6593679 DOI: 10.1111/acer.14052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
Background Based upon experimental animal studies, the neurodevelopmental abnormalities associated with prenatal alcohol exposure (PNAE)/fetal alcohol spectrum disorder (FASD) have been attributed, at least in part, to epigenetic modifications. However, there are no direct analyses of human brain tissue. Methods Immunohistochemical detection of global epigenetic markers was performed on temporal lobe samples of autopsied fetuses and infants with documented PNAE. They were compared to age‐, sex‐, and postmortem delay‐matched control cases (18 pairs; 20 to 70.5 weeks postconception). Temporal lobe tissue from a macaque monkey model of PNAE was also studied (5.7 to 6 months of age). We used antibodies targeting 4 DNA cytosine, 4 histone methylation, and 6 histone acetylation modifications and assigned scores based upon the semiquantitatively graded intensity and proportion of positively labeled nuclei in the ventricular and subventricular zones, ependyma, temporal cortex, temporal white matter, dentate gyrus (DG), and CA1 pyramidal layer. Results Temporal changes were identified for almost all marks according to the state of maturation in the human brain. In the DG (and 3 other brain regions), a statistically significant increase in H3K9ac was associated with PNAE. Statistically significant decreases were seen among 5mC, H3K4me3, H3K9ac, H3K27ac, H4K12ac, and H4K16ac in select regions. In the macaques, H3K36me3 decreased in the DG, and the ependyma showed decreases in 5fC and H3K36me3. Conclusions In human brain, global intranuclear epigenetic modifications are brain region and maturation state‐specific. These exploratory results support the general hypothesis that PNAE is associated with a global decrease in DNA methylation, a global decrease in histone methylation, and a global increase in histone acetylation. Although the human and monkey subjects are not directly comparable in terms of brain maturation, considering the rapid temporal changes in global epigenetic modifications during brain development, interspecies comparisons may be extremely difficult.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hannah Stirton
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Duaa Basalah
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sterling K Clarren
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Pediatrics, University of British Columbia Faculty of Medicine, Vancouver, British Columbia
| | - Susan J Astley
- Departments of Epidemiology/Pediatrics, University of Washington, Seattle, Washington
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Al-Shaer AE, Flentke GR, Berres ME, Garic A, Smith SM. Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder. PLoS Comput Biol 2019; 15:e1006937. [PMID: 30973878 PMCID: PMC6478348 DOI: 10.1371/journal.pcbi.1006937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/23/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Gestational alcohol exposure causes fetal alcohol spectrum disorder (FASD) and is a prominent cause of neurodevelopmental disability. Whole transcriptome sequencing (RNA-Seq) offer insights into mechanisms underlying FASD, but gene-level analysis provides limited information regarding complex transcriptional processes such as alternative splicing and non-coding RNAs. Moreover, traditional analytical approaches that use multiple hypothesis testing with a false discovery rate adjustment prioritize genes based on an adjusted p-value, which is not always biologically relevant. We address these limitations with a novel approach and implemented an unsupervised machine learning model, which we applied to an exon-level analysis to reduce data complexity to the most likely functionally relevant exons, without loss of novel information. This was performed on an RNA-Seq paired-end dataset derived from alcohol-exposed neural fold-stage chick crania, wherein alcohol causes facial deficits recapitulating those of FASD. A principal component analysis along with k-means clustering was utilized to extract exons that deviated from baseline expression. This identified 6857 differentially expressed exons representing 1251 geneIDs; 391 of these genes were identified in a prior gene-level analysis of this dataset. It also identified exons encoding 23 microRNAs (miRNAs) having significantly differential expression profiles in response to alcohol. We developed an RDAVID pipeline to identify KEGG pathways represented by these exons, and separately identified predicted KEGG pathways targeted by these miRNAs. Several of these (ribosome biogenesis, oxidative phosphorylation) were identified in our prior gene-level analysis. Other pathways are crucial to facial morphogenesis and represent both novel (focal adhesion, FoxO signaling, insulin signaling) and known (Wnt signaling) alcohol targets. Importantly, there was substantial overlap between the exomes themselves and the predicted miRNA targets, suggesting these miRNAs contribute to the gene-level expression changes. Our novel application of unsupervised machine learning in conjunction with statistical analyses facilitated the discovery of signaling pathways and miRNAs that inform mechanisms underlying FASD.
Collapse
Affiliation(s)
- Abrar E. Al-Shaer
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - George R. Flentke
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Mark E. Berres
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ana Garic
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan M. Smith
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| |
Collapse
|
14
|
Thamban T, Sowpati DT, Pai V, Nithianandam V, Abe T, Shioi G, Mishra RK, Khosla S. The putative Neuronatin imprint control region is an enhancer that also regulates the Blcap gene. Epigenomics 2019; 11:251-266. [DOI: 10.2217/epi-2018-0060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To investigate the regulatory potential of the Nnat second intron within the Nnat/Blcap micro-imprinted domain. Materials & methods: Mice with deletion of Nnat second intron at the endogenous Nnat/Blcap micro-imprinted domain were used to examine the effect of Nnat second intron on the transcriptional regulation of the Nnat and Blcap genes. Results & conclusion: Deletion of Nnat second intron affected Nnat expression in cis leading to the loss of Nnat expression from the active paternal allele. Nnat second intron was found to have the characteristics of an imprint control region including allele-specific DNA methylation and histone modifications and it also regulated the epigenetic profile of Nnat promoter by acting as an enhancer. Nnat second intron was also found to be regulating the expression of the Blcap transcripts.
Collapse
Affiliation(s)
- Thushara Thamban
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate studies, Manipal University, Manipal, India
| | - Divya Tej Sowpati
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | - Vaishnavo Pai
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
| | - Vanitha Nithianandam
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Takaya Abe
- Laboratory for Animal Resources & Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
| | - Go Shioi
- Laboratory for Animal Resources & Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | - Sanjeev Khosla
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
| |
Collapse
|
15
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
16
|
Banik A, Kandilya D, Ramya S, Stünkel W, Chong YS, Dheen ST. Maternal Factors that Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes (Basel) 2017; 8:E150. [PMID: 28538662 PMCID: PMC5485514 DOI: 10.3390/genes8060150] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is well established that the regulation of epigenetic factors, including chromatic reorganization, histone modifications, DNA methylation, and miRNA regulation, is critical for the normal development and functioning of the human brain. There are a number of maternal factors influencing epigenetic pathways such as lifestyle, including diet, alcohol consumption, and smoking, as well as age and infections (viral or bacterial). Genetic and metabolic alterations such as obesity, gestational diabetes mellitus (GDM), and thyroidism alter epigenetic mechanisms, thereby contributing to neurodevelopmental disorders (NDs) such as embryonic neural tube defects (NTDs), autism, Down's syndrome, Rett syndrome, and later onset of neuropsychological deficits. This review comprehensively describes the recent findings in the epigenetic landscape contributing to altered molecular profiles resulting in NDs. Furthermore, we will discuss potential avenues for future research to identify diagnostic markers and therapeutic epi-drugs to reverse these abnormalities in the brain as epigenetic marks are plastic and reversible in nature.
Collapse
Affiliation(s)
- Avijit Banik
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Seshadri Ramya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Walter Stünkel
- Singapore Institute of Clinical Sciences, A*STAR, Singapore 117609, Singapore.
| | - Yap Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
17
|
Öztürk NC, Resendiz M, Öztürk H, Zhou FC. DNA Methylation program in normal and alcohol-induced thinning cortex. Alcohol 2017; 60:135-147. [PMID: 28433420 DOI: 10.1016/j.alcohol.2017.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
While cerebral underdevelopment is a hallmark of fetal alcohol spectrum disorders (FASD), the mechanism(s) guiding the broad cortical neurodevelopmental deficits are not clear. DNA methylation is known to regulate early development and tissue specification through gene regulation. Here, we examined DNA methylation in the onset of alcohol-induced cortical thinning in a mouse model of FASD. C57BL/6 (B6) mice were administered a 4% alcohol (v/v) liquid diet from embryonic (E) days 7-16, and their embryos were harvested at E17, along with isocaloric liquid diet and lab chow controls. Cortical neuroanatomy, neural phenotypes, and epigenetic markers of methylation were assessed using immunohistochemistry, Western blot, and methyl-DNA assays. We report that cortical thickness, neuroepithelial proliferation, and neuronal migration and maturity were found to be deterred by alcohol at E17. Simultaneously, DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxcylmethylcytosine (5hmC), which progresses as an intrinsic program guiding normal embryonic cortical development, was severely affected by in utero alcohol exposure. The intricate relationship between cortical thinning and this DNA methylation program disruption is detailed and illustrated. DNA methylation, dynamic across the multiple cortical layers during the late embryonic stage, is highly disrupted by fetal alcohol exposure; this disruption occurs in tandem with characteristic developmental abnormalities, ranging from structural to molecular. Finally, our findings point to a significant question for future exploration: whether epigenetics guides neurodevelopment or whether developmental conditions dictate epigenetic dynamics in the context of alcohol-induced cortical teratogenesis.
Collapse
|
18
|
Disconnect between alcohol-induced alterations in chromatin structure and gene transcription in a mouse embryonic stem cell model of exposure. Alcohol 2017; 60:121-133. [PMID: 28433419 DOI: 10.1016/j.alcohol.2017.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/21/2022]
Abstract
Alterations to chromatin structure induced by environmental insults have become an attractive explanation for the persistence of exposure effects into subsequent life stages. However, a growing body of work examining the epigenetic impact that alcohol and other drugs of abuse exert consistently notes a disconnection between induced changes in chromatin structure and patterns of gene transcription. Thus, an important question is whether perturbations in the 'histone code' induced by prenatal exposures to alcohol implicitly subvert gene expression, or whether the hierarchy of cellular signaling networks driving development is such that they retain control over the transcriptional program. To address this question, we examined the impact of ethanol exposure in mouse embryonic stem cells cultured under 2i conditions, where the transcriptional program is rigidly enforced through the use of small molecule inhibitors. We find that ethanol-induced changes in post-translational histone modifications are dose-dependent, unique to the chromatin modification under investigation, and that the extent and direction of the change differ between the period of exposure and the recovery phase. Similar to in vivo models, we find post-translational modifications affecting histone 3 lysine 9 are the most profoundly impacted, with the signature of exposure persisting long after alcohol has been removed. These changes in chromatin structure associate with dose-dependent alterations in the levels of transcripts encoding Dnmt1, Uhrf1, Tet1, Tet2, Tet3, and Polycomb complex members Eed and Ezh2. However, in this model, ethanol-induced changes to the chromatin template do not consistently associate with changes in gene transcription, impede the process of differentiation, or affect the acquisition of monoallelic patterns of expression for the imprinted gene Igf2R. These findings question the inferred universal relevance of epigenetic changes induced by drugs of abuse and suggest that changes in chromatin structure cannot unequivocally explain dysgenesis in isolation.
Collapse
|
19
|
Laufer BI, Chater-Diehl EJ, Kapalanga J, Singh SM. Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: From mouse models to human children with fetal alcohol spectrum disorders. Alcohol 2017; 60:67-75. [PMID: 28187949 DOI: 10.1016/j.alcohol.2016.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Rodent models of Fetal Alcohol Spectrum Disorders (FASD) have revealed that prenatal alcohol exposure (PAE) results in differential DNA cytosine methylation in the developing brain. The resulting genome-wide methylation changes are enriched in genes with neurodevelopmental functions. The profile of differential methylation is dynamic and present in some form for life. The methylation changes are transmitted across subsequent mitotic divisions, where they are maintained and further modified over time. More recent follow up has identified a profile of the differential methylation in the buccal swabs of young children born with FASD. While distinct from the profile observed in brain tissue from rodent models, there are similarities. These include changes in genes belonging to a number of neurodevelopmental and behavioral pathways. Specifically, there is increased methylation at the clustered protocadherin genes and deregulation of genomically imprinted genes, even though no single gene is affected in all patients studied to date. These novel results suggest further development of a methylation based strategy could enable early and accurate diagnostics and therapeutics, which have remained a challenge in FASD research. There are two aspects of this challenge that must be addressed in the immediate future: First, the long-term differential methylomics observed in rodent models must be functionally confirmed. Second, the similarities in differential methylation must be further established in humans at a methylomic level and overcome a number of technical limitations. While a cure for FASD is challenging, there is an opportunity for the development of early diagnostics and attenuations towards a higher quality of life.
Collapse
|
20
|
Lo CL, Choudhury SR, Irudayaraj J, Zhou FC. Epigenetic Editing of Ascl1 Gene in Neural Stem Cells by Optogenetics. Sci Rep 2017; 7:42047. [PMID: 28181538 PMCID: PMC5299429 DOI: 10.1038/srep42047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022] Open
Abstract
Enzymes involved in epigenetic processes such as methyltransferases or demethylases are becoming highly utilized for their persistent DNA or histone modifying efficacy. Herein, we have developed an optogenetic toolbox fused to the catalytic domain (CD) of DNA-methyltransferase3A (DNMT3A-CD) or Ten-Eleven Dioxygenase-1 (TET1-CD) for loci-specific alteration of the methylation state at the promoter of Ascl1 (Mash1), a candidate proneuron gene. Optogenetical protein pairs, CRY2 linked to DNMT3A-CD or TET1-CD and CIB1 fused to a Transcription Activator-Like Element (TALE) locating an Ascl1 promoter region, were designed for site specific epigenetic editing. A differentially methylated region at the Ascl1 promoter, isolated from murine dorsal root ganglion (hypermethylated) and striated cells (hypomethylated), was targeted with these optogenetic-epigenetic constructs. Optimized blue-light illumination triggered the co-localization of TALE constructs with DNMT3A-CD or TET1-CD fusion proteins at the targeted site of the Ascl1 promoter. We found that this spatiotemporal association of the fusion proteins selectively alters the methylation state and also regulates gene activity. This proof of concept developed herein holds immense promise for the ability to regulate gene activity via epigenetic modulation with spatiotemporal precision.
Collapse
Affiliation(s)
- Chiao-Ling Lo
- Department of Anatomy &Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samrat Roy Choudhury
- Bindley Bioscience Center, Department of Agricultural &Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Joseph Irudayaraj
- Bindley Bioscience Center, Department of Agricultural &Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Feng C Zhou
- Department of Anatomy &Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Stark Institute of Neuroscience Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
21
|
Doehner W, Praße L, Wolpers J, Brückner MK, Ueberham U, Arendt T. Transgenerational transmission of an anticholinergic endophenotype with memory dysfunction. Neurobiol Aging 2016; 51:19-30. [PMID: 28033505 DOI: 10.1016/j.neurobiolaging.2016.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/21/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
Impaired cholinergic neurotransmission associated with cognitive dysfunction occurs in various mental disorders of different etiologies including Alzheimer's disease and postalcoholic dementia and others. To address the question whether there exists a common endophenotype with a defined genetic and/or epigenetic signature causing mental dysfunction in these disorders, we investigated 2 generations of offspring born to alcohol-treated mothers. Here, we show that memory impairment and reduced synthesis of acetylcholine occurs in both F1 (exposed to ethanol in utero) and F2 generation (never been exposed to ethanol). Effects in the F2 generation are most likely consequences of transgenerationally transmitted epigenetic modifications in stem cells induced by alcohol. This clearly documents the role of ancestral history of drug abuse on the brain development of subsequent generations. The results further suggest an epigenetic trait for an anticholinergic endophenotype associated with cognitive dysfunction which might be relevant to our understanding of mental impairment in neurodegenerative disorders such as Alzheimer's disease and related disorders.
Collapse
Affiliation(s)
- Wolfram Doehner
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - Lieselotte Praße
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - James Wolpers
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - Martina K Brückner
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - Uwe Ueberham
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
22
|
Kim YY, Roubal I, Lee YS, Kim JS, Hoang M, Mathiyakom N, Kim Y. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells. PLoS One 2016; 11:e0163812. [PMID: 27682028 PMCID: PMC5040434 DOI: 10.1371/journal.pone.0163812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023] Open
Abstract
Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event associated with alcohol-related peripheral neuropathy of an enhanced nociceptive response.
Collapse
Affiliation(s)
- Yi Young Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Ivan Roubal
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Youn Soo Lee
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Jin Seok Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Michael Hoang
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Nathan Mathiyakom
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Yong Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
- Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, 73–022 CHS, Los Angeles, CA, 90095, United States of America
- UCLA’s Jonsson Comprehensive Cancer Center, 8–684 Factor Building, Box 951781, Los Angeles, CA, 90095, United States of America
- UCLA Broad Stem Cell Research Center, Box 957357, Los Angeles, CA, 90095, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lopez CI, Saud KE, Aguilar R, Berndt FA, Cánovas J, Montecino M, Kukuljan M. The chromatin modifying complex CoREST/LSD1 negatively regulates notch pathway during cerebral cortex development. Dev Neurobiol 2016; 76:1360-1373. [PMID: 27112428 DOI: 10.1002/dneu.22397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/19/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
Abstract
The development of the cerebral cortex is a dynamic and coordinated process in which cell division, cell death, migration, and differentiation must be highly regulated to acquire the final architecture and functional competence of the mature organ. Notch pathway is an important regulator of differentiation and it is essential to maintain neural stem cell (NSC) pool. Here, we studied the role of epigenetic modulators such as lysine-specific demethylase 1 (LSD1) and its interactor CoREST in the regulation of the Notch pathway activity during the development of the cerebral cortex. We found that CoREST and LSD1 interact in vitro with RBPJ-κ in the repressor complex and these proteins are released upon overexpression of Notch intracellular domain (NICD). We corroborated LSD1 and RBPJ-κ interaction in developing cerebral cortex and also found that LSD1 binds to the hes1 promoter. Knock-down of CoREST and LSD1 by in utero electroporation increases Hes1 expression in vivo and decreases Ngn2. Interestingly, we found a functional interaction between CoREST and LSD1 with Notch pathway. This conclusion is based on the observation that both the defects in neuronal migration and the increase in the number of cells expressing Sox2 and Tbr2 were associated to the knock-down of either CoREST or LSD1 and were reversed by the loss of Notch. These results demonstrate that CoREST and LSD1 downregulate the Notch pathway in the developing cerebral cortex, thus suggesting a role of epigenetic regulation in the fine tuning of cell differentiation. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1360-1373, 2016.
Collapse
Affiliation(s)
- Cecilia I Lopez
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| | - Katherine E Saud
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| | - Rodrigo Aguilar
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andre's Bello, Santiago, Chile
| | - F Andrés Berndt
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| | - José Cánovas
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andre's Bello, Santiago, Chile
| | - Manuel Kukuljan
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Veazey KJ, Parnell SE, Miranda RC, Golding MC. Dose-dependent alcohol-induced alterations in chromatin structure persist beyond the window of exposure and correlate with fetal alcohol syndrome birth defects. Epigenetics Chromatin 2015; 8:39. [PMID: 26421061 PMCID: PMC4587584 DOI: 10.1186/s13072-015-0031-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 01/16/2023] Open
Abstract
Background In recent years, we have come to recognize that a multitude of in utero exposures have the capacity to induce the development of congenital and metabolic defects. As most of these encounters manifest their effects beyond the window of exposure, deciphering the mechanisms of teratogenesis is incredibly difficult. For many agents, altered epigenetic programming has become suspect in transmitting the lasting signature of exposure leading to dysgenesis. However, while several chemicals can perturb chromatin structure acutely, for many agents (particularly alcohol) it remains unclear if these modifications represent transient responses to exposure or heritable lesions leading to pathology. Results Here, we report that mice encountering an acute exposure to alcohol on gestational Day-7 exhibit significant alterations in chromatin structure (histone 3 lysine 9 dimethylation, lysine 9 acetylation, and lysine 27 trimethylation) at Day-17, and that these changes strongly correlate with the development of craniofacial and central nervous system defects. Using a neural cortical stem cell model, we find that the epigenetic changes arising as a consequence of alcohol exposure are heavily dependent on the gene under investigation, the dose of alcohol encountered, and that the signatures arising acutely differ significantly from those observed after a 4-day recovery period. Importantly, the changes observed post-recovery are consistent with those modeled in vivo, and associate with alterations in transcripts encoding multiple homeobox genes directing neurogenesis. Unexpectedly, we do not observe a correlation between alcohol-induced changes in chromatin structure and alterations in transcription. Interestingly, the majority of epigenetic changes observed occur in marks associated with repressive chromatin structure, and we identify correlative disruptions in transcripts encoding Dnmt1, Eed, Ehmt2 (G9a), EzH2, Kdm1a, Kdm4c, Setdb1, Sod3, Tet1 and Uhrf1. Conclusions These observations suggest that the immediate and long-term impacts of alcohol exposure on chromatin structure are distinct, and hint at the existence of a possible coordinated
epigenetic response to ethanol during development. Collectively, our results indicate that alcohol-induced modifications to chromatin structure persist beyond the window of exposure, and likely contribute to the development of fetal alcohol syndrome-associated congenital abnormalities. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0031-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kylee J Veazey
- Room 338 VMA, 4466 TAMU, Department of Veterinary Physiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies and Department of Cell Biology and Physiology, School of Medicine, CB# 7178, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Rajesh C Miranda
- Texas A&M Health Sciences Center, Texas A&M University, 8441 State Highway 47, Clinical Building 1, Suite 3100, Bryan, TX 77807 USA
| | - Michael C Golding
- Room 338 VMA, 4466 TAMU, Department of Veterinary Physiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| |
Collapse
|
25
|
Mason S, Zhou FC. Editorial: Genetics and epigenetics of fetal alcohol spectrum disorders. Front Genet 2015; 6:146. [PMID: 25932031 PMCID: PMC4399412 DOI: 10.3389/fgene.2015.00146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/27/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stephen Mason
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA ; Stark Neuroscience Research Institute, Indiana University School of Medicine Indianapolis, IN, USA ; Indiana Alcohol Research Center, Indiana University School of Medicine Indianapolis, IN, USA ; Department of Psychology, Indiana University-Purdue University at Indianapolis Indianapolis, IN, USA
| |
Collapse
|