1
|
Goli RC, Chishi KG, Mahar K, Gunturu T, Metta M, Diwakar V, Purohit P, Kumar A, Channabasappa NK, Aderao GN, Sukhija N, Kareningappa KK. Rethinking River Buffalo Domestication Through the Lens of Population Genetics Tools: Mehsana Buffalo Is a Unique Population. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:206-220. [PMID: 40233143 DOI: 10.1089/omi.2024.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Riverine buffalo domestication likely occurred around 6300 years ago in Northwestern India. Murrah and Surti are important buffalo breeds that originated in this region and the gene flow from these buffaloes to Mehsana buffalo has long been proposed. However, the extent to which Murrah and Surti ancestry diffused across Mehsana has not been investigated thoroughly. Therefore, we investigated the global and local ancestry of Indian Mehsana buffalo using double digest restriction-site associated DNA sequencing data. Principal component analysis, global ancestry analysis, admixture dating, and three population tests revealed with statistical significance that Mehsana is a unique population. Hence, the hypothesis that Mehsana is a crossbreed between Murrah and Surti is not supported by these findings. However, we noticed that some individuals of Mehsana, 6 out 15, were admixed having 41% Murrah-specific ancestry and 11% Surti-specific ancestry. Local ancestry and post-admixture selection signatures (PASS) in admixed Mehsana individuals revealed PASS in the Mehsana genome, that is, on Bubalus bubalis autosomes (BBA), 1-23 linked from Surti and on BBA, 24 linked from Murrah. Interestingly, upon functional enrichment of these signatures, several adaptation-related genes and pathways were ascertained to Surti, while Murrah-derived regions featured genes involved in fatty acid synthesis (Acyl-CoA Synthetase Short-Chain Family Member 2 (ACSS2)) and milk production. Based on local ancestry analysis, we infer that the introgression of the Murrah genome into Mehsana happened in recent times and that of the Surti genome happened in ancient generations. The finding that Mehsana is an independent population highlights the importance of recognizing distinct genetic lineages in domesticated species. This has global implications for reevaluating the origins and uniqueness of other livestock breeds often assumed to be hybrids. Practically, these findings open up new avenues for selective breeding to preserve traits such as disease resistance, adaptability, and production efficiency. Further studies in larger samples are called for.
Collapse
Affiliation(s)
- Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Karan Mahar
- ICAR-National Dairy Research Institute, Karnal, India
| | - Tanuj Gunturu
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Vikas Diwakar
- ICAR-National Dairy Research Institute, Karnal, India
| | - Pravin Purohit
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Amit Kumar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | | | - Ganesh N Aderao
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Nidhi Sukhija
- CSB-Central Taser Research and Training Institute, Ranchi, India
| | | |
Collapse
|
2
|
Friedrich J, Bailey RI, Talenti A, Chaudhry U, Ali Q, Obishakin EF, Ezeasor C, Powell J, Hanotte O, Tijjani A, Marshall K, Prendergast J, Wiener P. Mapping restricted introgression across the genomes of admixed indigenous African cattle breeds. Genet Sel Evol 2023; 55:91. [PMID: 38097935 PMCID: PMC10722721 DOI: 10.1186/s12711-023-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The genomes of indigenous African cattle are composed of components with Middle Eastern (taurine) and South Asian (indicine) origins, providing a valuable model to study hybridization and to identify genetic barriers to gene flow. In this study, we analysed indigenous African cattle breeds as models of hybrid zones, considering taurine and indicine samples as ancestors. In a genomic cline analysis of whole-genome sequence data, we considered over 8 million variants from 144 animals, which allows for fine-mapping of potential genomic incompatibilities at high resolution across the genome. RESULTS We identified several thousand variants that had significantly steep clines ('SCV') across the whole genome, indicating restricted introgression. Some of the SCV were clustered into extended regions, with the longest on chromosome 7, spanning 725 kb and including 27 genes. We found that variants with a high phenotypic impact (e.g. indels, intra-genic and missense variants) likely represent greater genetic barriers to gene flow. Furthermore, our findings provide evidence that a large proportion of breed differentiation in African cattle could be linked to genomic incompatibilities and reproductive isolation. Functional evaluation of genes with SCV suggest that mitonuclear incompatibilities and genes associated with fitness (e.g. resistance to paratuberculosis) could account for restricted gene flow in indigenous African cattle. CONCLUSIONS To our knowledge, this is the first time genomic cline analysis has been applied to identify restricted introgression in the genomes of indigenous African cattle and the results provide extended insights into mechanisms (e.g. genomic incompatibilities) contributing to hybrid differentiation. These results have important implications for our understanding of genetic incompatibilities and reproductive isolation and provide important insights into the impact of cross-breeding cattle with the aim of producing offspring that are both hardy and productive.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Richard I Bailey
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Andrea Talenti
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Umer Chaudhry
- School of Veterinary Medicine, St. George's University, St. George's, Caribbean, Grenada
| | - Qasim Ali
- Department of Parasitology, The University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Emmanuel F Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Chukwunonso Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jessica Powell
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Karen Marshall
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - James Prendergast
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
3
|
Tian R, Asadollahpour Nanaie H, Wang X, Dalai B, Zhao M, Wang F, Li H, Yang D, Zhang H, Li Y, Wang T, Luan T, Wu J. Genomic adaptation to extreme climate conditions in beef cattle as a consequence of cross-breeding program. BMC Genomics 2023; 24:186. [PMID: 37024818 PMCID: PMC10080750 DOI: 10.1186/s12864-023-09235-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Understanding the evolutionary forces related to climate changes that have been shaped genetic variation within species has long been a fundamental pursuit in biology. In this study, we generated whole-genome sequence (WGS) data from 65 cross-bred and 45 Mongolian cattle. Together with 62 whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of cattle populations. In addition, we performed comparative population genomics analyses to explore the genetic basis underlying variation in the adaptation to cold climate and immune response in cross-bred cattle located in the cold region of China. To elucidate genomic signatures that underlie adaptation to cold climate, we performed three statistical measurements, fixation index (FST), log2 nucleotide diversity (θπ ratio) and cross population composite likelihood ratio (XP-CLR), and further investigated the results to identify genomic regions under selection for cold adaptation and immune response-related traits. RESULTS By generating WGS data, we investigated the population genetic structure and phylogenetic relationship of studied cattle populations. The results revealed clustering of cattle groups in agreement with their geographic distribution. We detected noticeable genetic diversity between indigenous cattle ecotypes and commercial populations. Analysis of population structure demonstrated evidence of shared genetic ancestry between studied cross-bred population and both Red-Angus and Mongolian breeds. Among all studied cattle populations, the highest and lowest levels of linkage disequilibrium (LD) per Kb were detected in Holstein and Rashoki populations (ranged from ~ 0.54 to 0.73, respectively). Our search for potential genomic regions under selection in cross-bred cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes. We identified some adaptive introgression genes with greater than expected contributions from Mongolian ancestry into Molgolian x Red Angus composites such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis. In addition, we detected some candidate genes probably associated with immune response-related traits. CONCLUSION The study identified candidate genes involved in responses to cold adaptation and immune response in cross-bred cattle, including new genes or gene pathways putatively involved in these adaptations. The identification of these genes may clarify the molecular basis underlying adaptation to extreme environmental climate and as such they might be used in cattle breeding programs to select more efficient breeds for cold climate regions.
Collapse
Affiliation(s)
- Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Hojjat Asadollahpour Nanaie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Baolige Dalai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Feng Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Ding Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hao Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Tingyue Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Tu Luan
- Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Jianghong Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.
| |
Collapse
|
4
|
Deng TX, Ma XY, Lu XR, Duan AQ, Shokrollahi B, Shang JH. Signatures of selection reveal candidate genes involved in production traits in Chinese crossbred buffaloes. J Dairy Sci 2021; 105:1327-1337. [PMID: 34955275 DOI: 10.3168/jds.2021-21102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Identification of selection signature is important for a better understanding of genetic mechanisms that affect phenotypic differentiation in livestock. However, the genome-wide selection responses have not been investigated for the production traits of Chinese crossbred buffaloes. In this study, an SNP data set of 133 buffaloes (Chinese crossbred buffalo, n = 45; Chinese local swamp buffalo, n = 88) was collected from the Dryad Digital Repository database (https://datadryad.org/stash/). Population genetics analysis showed that these buffaloes were divided into the following 2 groups: crossbred buffalo and swamp buffalo. The crossbred group had higher genetic diversity than the swamp group. Using 3 complementary statistical methods (integrated haplotype score, cross population extended haplotype homozygosity, and composite likelihood ratio), a total of 31 candidate selection regions were identified in the Chinese crossbred population. Here, within these candidate regions, 25 genes were under the putative selection. Among them, several candidate genes were reported to be associated with production traits. In addition, we identified 13 selection regions that overlapped with bovine QTLs that were mainly involved in milk production and composition traits. These results can provide useful insights regarding the selection response for production traits of Chinese crossbred buffalo, as identified candidate genes influence production performance.
Collapse
Affiliation(s)
- T X Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| | - X Y Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - X R Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - A Q Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran 5595-73919
| | - J H Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| |
Collapse
|
5
|
Michael P, de Cruz CR, Mohd Nor N, Jamli S, Goh YM. The Potential of Using Temperate-Tropical Crossbreds and Agricultural by-Products, Associated with Heat Stress Management for Dairy Production in the Tropics: A Review. Animals (Basel) 2021; 12:1. [PMID: 35011107 PMCID: PMC8749655 DOI: 10.3390/ani12010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
The demand and consumption of dairy products are expected to increase exponentially in developing countries, particularly in tropical regions. However, the intensification of dairy production to meet this increasing demand has its challenges. The challenges ranged from feed costs, resources, and their utilization, as well as the heat stress associated with rearing temperate-tropical crossbred cattle in the tropics. This article focused on key nutritional and environmental factors that should be considered when temperate-tropical crossbred cattle are used in the tropics. The article also describes measures to enhance the utilization of regional feed resources and efforts to overcome the impacts of heat stress. Heat stress is a major challenge in tropical dairy farming, as it leads to poor production, despite the genetic gains made through crossbreeding of high production temperate cattle with hardy tropical animals. The dependence on imported feed and animal-man competition for the same feed resources has escalated feed cost and food security concerns. The utilization of agricultural by-products and production of stable tropical crossbreds will be an asset to tropical countries in the future, more so when scarcity of feed resources and global warming becomes a closer reality. This initiative has far-reaching impacts in the tropics and increasingly warmer areas of traditional dairying regions in the future.
Collapse
Affiliation(s)
- Predith Michael
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Livestock Science Research Centre, Malaysian Agricultural Research and Development Institute Headquarters, Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia;
| | - Clement Roy de Cruz
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Norhariani Mohd Nor
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Saadiah Jamli
- Livestock Science Research Centre, Malaysian Agricultural Research and Development Institute Headquarters, Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia;
| | - Yong Meng Goh
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
6
|
Yougbaré B, Ouédraogo D, Tapsoba ASR, Soudré A, Zoma BL, Orozco-terWengel P, Moumouni S, Ouédraogo-Koné S, Wurzinger M, Tamboura HH, Traoré A, Mwai OA, Sölkner J, Khayatzadeh N, Mészáros G, Burger PA. Local Ancestry to Identify Selection in Response to Trypanosome Infection in Baoulé x Zebu Crossbred Cattle in Burkina Faso. Front Genet 2021; 12:670390. [PMID: 34646296 PMCID: PMC8504455 DOI: 10.3389/fgene.2021.670390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022] Open
Abstract
The genomes of crossbred (admixed) individuals are a mosaic of ancestral haplotypes formed by recombination in each generation. The proportion of these ancestral haplotypes in certain genomic regions can be responsible for either susceptibility or tolerance against pathogens, and for performances in production traits. Using a medium-density genomic marker panel from the Illumina Bovine SNP50 BeadChip, we estimated individual admixture proportions for Baoulé x Zebu crossbred cattle in Burkina Faso, which were tested for trypanosome infection by direct ELISA from blood samples. Furthermore, we calculated local ancestry deviation from average for each SNP across 29 autosomes to identify potential regions under selection in the trypanotolerant Baoulé cattle and their crossbreds. We identified significant deviation from the local average ancestry (above 5 and 10% genome-wide thresholds) on chromosomes 8 and 19 in the positive animals, while the negative ones showed higher deviation on chromosomes 6, 19, 21, and 22. Some candidate genes on chromosome 6 (PDGFRA) and chromosome 19 (CDC6) have been found associated to trypanotolerance in West African taurines. Screening for FST outliers in trypanosome positive/negative animals we detected seven variants putatively under selection. Finally, we identified a minimum set of highly ancestry informative markers for routine admixture testing. The results of this study contribute to a better understanding of the genetic basis of trypanotolerance in Baoulé cattle and their crossbreeds. Furthermore, we provide a small informative marker set to monitor admixture in this valuable indigenous breed. As such, our results are important for conserving the genetic uniqueness and trypanotolerance of Baoulé cattle, as well as for the improvement of Baoulé and Zebu crossbreds in specific community-based breeding programs.
Collapse
Affiliation(s)
- Bernadette Yougbaré
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.,Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Dominique Ouédraogo
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.,Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Arnaud S R Tapsoba
- Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Albert Soudré
- Unité de Formation et de Recherche en Sciences et Technologies, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Bienvenue L Zoma
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.,Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | | | - Sanou Moumouni
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | | | - Maria Wurzinger
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Hamidou H Tamboura
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Amadou Traoré
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Okeyo Ally Mwai
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Johann Sölkner
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Negar Khayatzadeh
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.,SUISAG, Sempach, Switzerland
| | - Gábor Mészáros
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, Vienna, Austria
| |
Collapse
|
7
|
Singh A, Mehrotra A, Gondro C, Romero ARDS, Pandey AK, Karthikeyan A, Bashir A, Mishra BP, Dutt T, Kumar A. Signatures of Selection in Composite Vrindavani Cattle of India. Front Genet 2020; 11:589496. [PMID: 33391343 PMCID: PMC7775581 DOI: 10.3389/fgene.2020.589496] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Vrindavani is an Indian composite cattle breed developed by crossbreeding taurine dairy breeds with native indicine cattle. The constituent breeds were selected for higher milk production and adaptation to the tropical climate. However, the selection response for production and adaptation traits in the Vrindavani genome is not explored. In this study, we provide the first overview of the selection signatures in the Vrindavani genome. A total of 96 Vrindavani cattle were genotyped using the BovineSNP50 BeadChip and the SNP genotype data of its constituent breeds were collected from a public database. Within-breed selection signatures in Vrindavani were investigated using the integrated haplotype score (iHS). The Vrindavani breed was also compared to each of its parental breeds to discover between-population signatures of selection using two approaches, cross-population extended haplotype homozygosity (XP-EHH) and fixation index (FST). We identified 11 common regions detected by more than one method harboring genes such as LRP1B, TNNI3K, APOB, CACNA2D1, FAM110B, and SPATA17 associated with production and adaptation. Overall, our results suggested stronger selective pressure on regions responsible for adaptation compared to milk yield.
Collapse
Affiliation(s)
- Akansha Singh
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Arnav Mehrotra
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | | | - Ashwni Kumar Pandey
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - A Karthikeyan
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Aamir Bashir
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - B P Mishra
- Animal Biotechnology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
8
|
Zhang K, Lenstra JA, Zhang S, Liu W, Liu J. Evolution and domestication of the Bovini species. Anim Genet 2020; 51:637-657. [PMID: 32716565 DOI: 10.1111/age.12974] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species - taurine cattle, zebu and yak - and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Yalelaan 104, Utrecht, 3584 CM, The Netherlands
| | - S Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - W Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Mrode R, Ojango JMK, Okeyo AM, Mwacharo JM. Genomic Selection and Use of Molecular Tools in Breeding Programs for Indigenous and Crossbred Cattle in Developing Countries: Current Status and Future Prospects. Front Genet 2019; 9:694. [PMID: 30687382 PMCID: PMC6334160 DOI: 10.3389/fgene.2018.00694] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022] Open
Abstract
Genomic selection (GS) has resulted in rapid rates of genetic gains especially in dairy cattle in developed countries resulting in a higher proportion of genomically proven young bulls being used in breeding. This success has been undergirded by well-established conventional genetic evaluation systems. Here, the status of GS in terms of the structure of the reference and validation populations, response variables, genomic prediction models, validation methods, and imputation efficiency in breeding programs of developing countries, where smallholder systems predominate and the basic components for conventional breeding are mostly lacking is examined. Also, the application of genomic tools and identification of genome-wide signatures of selection is reviewed. The studies on genomic prediction in developing countries are mostly in dairy and beef cattle usually with small reference populations (500-3,000 animals) and are mostly cows. The input variables tended to be pre-corrected phenotypic records and the small reference populations has made implementation of various Bayesian methods feasible in addition to GBLUP. Multi-trait single-step has been used to incorporate genomic information from foreign bulls, thus GS in developing countries would benefit from collaborations with developed countries, as many dairy sires used are from developed countries where they may have been genotyped and phenotyped. Cross validation approaches have been implemented in most studies resulting in accuracies of 0.20-0.60. Genotyping animals with a mixture of HD and LD chips, followed by imputation to the HD have been implemented with imputation accuracies of 0.74-0.99 reported. This increases the prospects of reducing genotyping costs and hence the cost-effectiveness of GS. Next-generation sequencing and associated technologies have allowed the determination of breed composition, parent verification, genome diversity, and genome-wide selection sweeps. This information can be incorporated into breeding programs aiming to utilize GS. Cost-effective GS in beef cattle in developing countries may involve usage of reproductive technologies (AI and in-vitro fertilization) to efficiently propagate superior genetics from the genomics pipeline. For dairy cattle, sexed semen of genomically proven young bulls could substantially improve profitability thus increase prospects of small holder farmers buying-in into genomic breeding programs.
Collapse
Affiliation(s)
- Raphael Mrode
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
- Animal and Veterinary Science, Scotland Rural College, Edinburgh, United Kingdom
| | - Julie M. K Ojango
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
| | - A. M. Okeyo
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
| | - Joram M. Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| |
Collapse
|
10
|
Cheruiyot EK, Bett RC, Amimo JO, Zhang Y, Mrode R, Mujibi FDN. Signatures of Selection in Admixed Dairy Cattle in Tanzania. Front Genet 2018; 9:607. [PMID: 30619449 PMCID: PMC6305962 DOI: 10.3389/fgene.2018.00607] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023] Open
Abstract
Multiple studies have investigated selection signatures in domestic cattle and other species. However, there is a dearth of information about the response to selection in genomes of highly admixed crossbred cattle in relation to production and adaptation to tropical environments. In this study, we evaluated 839 admixed crossbred cows sampled from two major dairy regions in Tanzania namely Rungwe and Lushoto districts, in order to understand their genetic architecture and detect genomic regions showing preferential selection. Animals were genotyped at 150,000 SNP loci using the Geneseek Genomic Profiler (GGP) High Density (HD) SNP array. Population structure analysis showed a large within-population genetic diversity in the study animals with a high degree of variation in admixture ranging between 7 and 100% taurine genes (dairyness) of mostly Holstein and Friesian ancestry. We explored evidence of selection signatures using three statistical methods (iHS, XP-EHH, and pcadapt). Selection signature analysis identified 108 candidate selection regions in the study population. Annotation of these regions yielded interesting genes potentially under strong positive selection including ABCG2, ABCC2, XKR4, LYN, TGS1, TOX, HERC6, KIT, PLAG1, CHCHD7, NCAPG, and LCORL that are involved in multiple biological pathways underlying production and adaptation processes. Several candidate selection regions showed an excess of African taurine ancestral allele dosage. Our results provide further useful insight into potential selective sweeps in the genome of admixed cattle with possible adaptive and productive importance. Further investigations will be necessary to better characterize these candidate regions with respect to their functional significance to tropical adaptations for dairy cattle.
Collapse
Affiliation(s)
- Evans Kiptoo Cheruiyot
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya.,USOMI Limited, Nairobi, Kenya
| | - Rawlynce Cheruiyot Bett
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
| | - Joshua Oluoch Amimo
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
| | - Yi Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Raphael Mrode
- International Livestock Research Institute, Nairobi, Kenya.,Scotland's Rural College, Edinburgh, United Kingdom
| | - Fidalis D N Mujibi
- USOMI Limited, Nairobi, Kenya.,Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| |
Collapse
|
11
|
Identification of genomic regions harboring diversity between Holstein and two local endangered breeds, Modenese and Maremmana. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Leonardi M, Librado P, Der Sarkissian C, Schubert M, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, Gamba C, Willerslev E, Orlando L. Evolutionary Patterns and Processes: Lessons from Ancient DNA. Syst Biol 2018; 66:e1-e29. [PMID: 28173586 PMCID: PMC5410953 DOI: 10.1093/sysbio/syw059] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 12/02/2022] Open
Abstract
Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution—time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data.
Collapse
Affiliation(s)
- Michela Leonardi
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Ahmed H Alfarhan
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Cristina Gamba
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark.,Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark.,Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, Toulouse, France
| |
Collapse
|
13
|
Qureshi MS, Suhail SM, Akhtar S, Khan RU. Postpartum endocrine activities, metabolic attributes and milk yield are influenced by thermal stress in crossbred dairy cows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1561-1569. [PMID: 28393266 DOI: 10.1007/s00484-017-1335-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
This study was conducted on 30 freshly parturated multiparous crossbred dairy cows possessing three levels of Holstein Frisian genetic makeup (62.5, 75.0, and 87.5%). Data on temperature humidity index (THI) were classified into comfortable (≤ 71), mild stress (72-79), moderate stress (80-89), and stressful (≥90) zone. Results showed that serum cortisol concentration increased significantly (P < 0.05) in cows during stressful condition irrespective of genetic makeup compared to the other zones. Daily milk yield (DMY) was significantly (P < 0.05) lower in cows during stressful condition. Triglyceride was significantly higher in cows with genetic makeup 87.5% compared to the others, while total serum protein was significantly (P < 0.05) higher in cows during both moderate and stressful conditions. The mean concentration of cortisol and protein increased linearly from comfort to the stressful condition, while mean serum triglyceride, glucose, progesterone (P4), and luteinizing hormone (LH) decreased by moving from comfort to stressful conditions. Results also indicated that higher cortisol level in higher grade crossbred cows was adversely associated with LH concentration and milk yield under thermal stress conditions. Greater triglyceride in high-grade crossbred (87.5%) cows indicates higher fat mobilization reflecting a negative energy balance. We concluded that heat stress increased blood cortisol and protein, and reduced milk yield in dairy cows irresptive of the genetic makeup. In addition, there was no significant difference in blood metabolites and daily milk yield in the different levels of genetic makeup cows.
Collapse
Affiliation(s)
- Muhammad Subhan Qureshi
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Syed Muhammad Suhail
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Sohail Akhtar
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Rifat Ullah Khan
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
| |
Collapse
|
14
|
Evidence of positive selection towards Zebuine haplotypes in the BoLA region of Brangus cattle. Animal 2017; 12:215-223. [PMID: 28707606 DOI: 10.1017/s1751731117001380] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Brangus breed was developed to combine the superior characteristics of both of its founder breeds, Angus and Brahman. It combines the high adaptability to tropical and subtropical environments, disease resistance, and overall hardiness of Zebu cattle with the reproductive potential and carcass quality of Angus. It is known that the major histocompatibility complex (MHC, also known as bovine leucocyte antigen: BoLA), located on chromosome 23, encodes several genes involved in the adaptive immune response and may be responsible for adaptation to harsh environments. The objective of this work was to evaluate whether the local breed ancestry percentages in the BoLA locus of a Brangus population diverged from the estimated genome-wide proportions and to identify signatures of positive selection in this genomic region. For this, 167 animals (100 Brangus, 45 Angus and 22 Brahman) were genotyped using a high-density single nucleotide polymorphism array. The local ancestry analysis showed that more than half of the haplotypes (55.0%) shared a Brahman origin. This value was significantly different from the global genome-wide proportion estimated by cluster analysis (34.7% Brahman), and the proportion expected by pedigree (37.5% Brahman). The analysis of selection signatures by genetic differentiation (F st ) and extended haplotype homozygosity-based methods (iHS and Rsb) revealed 10 and seven candidate regions, respectively. The analysis of the genes located within these candidate regions showed mainly genes involved in immune response-related pathway, while other genes and pathways were also observed (cell surface signalling pathways, membrane proteins and ion-binding proteins). Our results suggest that the BoLA region of Brangus cattle may have been enriched with Brahman haplotypes as a consequence of selection processes to promote adaptation to subtropical environments.
Collapse
|
15
|
Msalya G, Kim ES, Laisser ELK, Kipanyula MJ, Karimuribo ED, Kusiluka LJM, Chenyambuga SW, Rothschild MF. Determination of Genetic Structure and Signatures of Selection in Three Strains of Tanzania Shorthorn Zebu, Boran and Friesian Cattle by Genome-Wide SNP Analyses. PLoS One 2017; 12:e0171088. [PMID: 28129396 PMCID: PMC5271371 DOI: 10.1371/journal.pone.0171088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 01/16/2017] [Indexed: 11/29/2022] Open
Abstract
Background More than 90 percent of cattle in Tanzania belong to the indigenous Tanzania Short Horn Zebu (TSZ) population which has been classified into 12 strains based on historical evidence, morphological characteristics, and geographic distribution. However, specific genetic information of each TSZ population has been lacking and has caused difficulties in designing programs such as selection, crossbreeding, breed improvement or conservation. This study was designed to evaluate the genetic structure, assess genetic relationships, and to identify signatures of selection among cattle of Tanzania with the main goal of understanding genetic relationship, variation and uniqueness among them. Methodology/Principal findings The Illumina Bos indicus SNP 80K BeadChip was used to genotype genome wide SNPs in 168 DNA samples obtained from three strains of TSZ cattle namely Maasai, Tarime and Sukuma as well as two comparative breeds; Boran and Friesian. Population structure and signatures of selection were examined using principal component analysis (PCA), admixture analysis, pairwise distances (FST), integrated haplotype score (iHS), identical by state (IBS) and runs of homozygosity (ROH). There was a low level of inbreeding (F~0.01) in the TSZ population compared to the Boran and Friesian breeds. The analyses of FST, IBS and admixture identified no considerable differentiation between TSZ trains. Importantly, common ancestry in Boran and TSZ were revealed based on admixture and IBD, implying gene flow between two populations. In addition, Friesian ancestry was found in Boran. A few common significant iHS were detected, which may reflect influence of recent selection in each breed or strain. Conclusions Population admixture and selection signatures could be applied to develop conservation plan of TSZ cattle as well as future breeding programs in East African cattle.
Collapse
Affiliation(s)
- George Msalya
- Department of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture (SUA), Morogoro, Tanzania
- * E-mail:
| | - Eui-Soo Kim
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Emmanuel L. K. Laisser
- Department of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture (SUA), Morogoro, Tanzania
- Ministry of Education and Vocational Training, Inspectorate Department Eastern Zone, Morogoro, Tanzania
| | | | - Esron D. Karimuribo
- Department of Veterinary Medicine and Public Health, SUA, Morogoro, Tanzania
| | - Lughano J. M. Kusiluka
- Department of Veterinary Medicine and Public Health, SUA, Morogoro, Tanzania
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Sebastian W. Chenyambuga
- Department of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture (SUA), Morogoro, Tanzania
| | - Max F. Rothschild
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
16
|
Vandenplas J, Calus MPL, Sevillano CA, Windig JJ, Bastiaansen JWM. Assigning breed origin to alleles in crossbred animals. Genet Sel Evol 2016; 48:61. [PMID: 27549177 PMCID: PMC4994281 DOI: 10.1186/s12711-016-0240-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For some species, animal production systems are based on the use of crossbreeding to take advantage of the increased performance of crossbred compared to purebred animals. Effects of single nucleotide polymorphisms (SNPs) may differ between purebred and crossbred animals for several reasons: (1) differences in linkage disequilibrium between SNP alleles and a quantitative trait locus; (2) differences in genetic backgrounds (e.g., dominance and epistatic interactions); and (3) differences in environmental conditions, which result in genotype-by-environment interactions. Thus, SNP effects may be breed-specific, which has led to the development of genomic evaluations for crossbred performance that take such effects into account. However, to estimate breed-specific effects, it is necessary to know breed origin of alleles in crossbred animals. Therefore, our aim was to develop an approach for assigning breed origin to alleles of crossbred animals (termed BOA) without information on pedigree and to study its accuracy by considering various factors, including distance between breeds. RESULTS The BOA approach consists of: (1) phasing genotypes of purebred and crossbred animals; (2) assigning breed origin to phased haplotypes; and (3) assigning breed origin to alleles of crossbred animals based on a library of assigned haplotypes, the breed composition of crossbred animals, and their SNP genotypes. The accuracy of allele assignments was determined for simulated datasets that include crosses between closely-related, distantly-related and unrelated breeds. Across these scenarios, the percentage of alleles of a crossbred animal that were correctly assigned to their breed origin was greater than 90 %, and increased with increasing distance between breeds, while the percentage of incorrectly assigned alleles was always less than 2 %. For the remaining alleles, i.e. 0 to 10 % of all alleles of a crossbred animal, breed origin could not be assigned. CONCLUSIONS The BOA approach accurately assigns breed origin to alleles of crossbred animals, even if their pedigree is not recorded.
Collapse
Affiliation(s)
- Jérémie Vandenplas
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, 6700 AH, Wageningen, The Netherlands.
| | - Mario P L Calus
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, 6700 AH, Wageningen, The Netherlands
| | - Claudia A Sevillano
- Topigs Norsvin Research Center B.V., 6640 AA, Beuningen, The Netherlands.,Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands
| | - Jack J Windig
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, 6700 AH, Wageningen, The Netherlands
| | - John W M Bastiaansen
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
17
|
Khayatzadeh N, Mészáros G, Utsunomiya YT, Garcia JF, Schnyder U, Gredler B, Curik I, Sölkner J. Locus-specific ancestry to detect recent response to selection in admixed Swiss Fleckvieh cattle. Anim Genet 2016; 47:637-646. [PMID: 27435758 DOI: 10.1111/age.12470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 01/08/2023]
Abstract
Identification of selection signatures is one of the current endeavors of evolutionary genetics. Admixed populations may be used to infer post-admixture selection. We calculated local ancestry for Swiss Fleckvieh, a composite of Simmental (SI) and Red Holstein Friesian (RHF), to infer such signals. Illumina Bovine SNP50 BeadChip data for 300 admixed, 88 SI and 97 RHF bulls were used. The average RHF ancestry across the whole genome was 0.70. To identify regions with high deviation from average, we considered two significance thresholds, based on a permutation test and extreme deviation from normal distribution. Regions on chromosomes 13 (46.3-47.3 Mb) and 18 (18.7-25.9 Mb) passed both thresholds in the direction of increased SI. Extended haplotype homozygosity within (iHS) and between (Rsb) populations was calculated to explore additional patterns of pre- and post-admixture selection signals. The Rsb score of admixed and SI was significant in a wide region of chromosome 18 (6.6-24.6 Mb) overlapped with one area of strong local ancestry deviation. FTO, with pleiotropic effect on milk and fertility, NOD2 on dairy and NKD1 and SALL1 on fertility traits are located there. Genetic differentiation of RHF and SI (Fst ), an alternative indicator of pre-admixture selection in pure populations, was calculated. No considerable overlap of peaks of local ancestry deviations and Fst was observed. We found two regions with significant signatures of post-admixture selection in this very young composite, applying comparatively stringent significance thresholds. The signals cover relatively large genomic areas and did not allow pinpointing of the gene(s) responsible for the apparent shift in ancestry proportions.
Collapse
Affiliation(s)
- N Khayatzadeh
- Division of Livestock Science, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, A-1180, Vienna, Austria
| | - G Mészáros
- Division of Livestock Science, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, A-1180, Vienna, Austria.
| | - Y T Utsunomiya
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - J F Garcia
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil.,Departamento de Apoio, Saúde e Produção Animal, Faculdade de Medicina Veterinária de Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - U Schnyder
- Qualitas AG, Chamerstrasse 56, CH-6300, Zug, Switzerland
| | - B Gredler
- Qualitas AG, Chamerstrasse 56, CH-6300, Zug, Switzerland
| | - I Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - J Sölkner
- Division of Livestock Science, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, A-1180, Vienna, Austria
| |
Collapse
|
18
|
Inference of population structure of purebred dairy and beef cattle using high-density genotype data. Animal 2016; 11:15-23. [PMID: 27330040 DOI: 10.1017/s1751731116001099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Information on the genetic diversity and population structure of cattle breeds is useful when deciding the most optimal, for example, crossbreeding strategies to improve phenotypic performance by exploiting heterosis. The present study investigated the genetic diversity and population structure of the most prominent dairy and beef breeds used in Ireland. Illumina high-density genotypes (777 962 single nucleotide polymorphisms; SNPs) were available on 4623 purebred bulls from nine breeds; Angus (n=430), Belgian Blue (n=298), Charolais (n=893), Hereford (n=327), Holstein-Friesian (n=1261), Jersey (n=75), Limousin (n=943), Montbéliarde (n=33) and Simmental (n=363). Principal component analysis revealed that Angus, Hereford, and Jersey formed non-overlapping clusters, representing distinct populations. In contrast, overlapping clusters suggested geographical proximity of origin and genetic similarity between Limousin, Simmental and Montbéliarde and to a lesser extent between Holstein, Friesian and Belgian Blue. The observed SNP heterozygosity averaged across all loci was 0.379. The Belgian Blue had the greatest mean observed heterozygosity (HO=0.389) among individuals within breed while the Holstein-Friesian and Jersey populations had the lowest mean heterozygosity (HO=0.370 and 0.376, respectively). The correlation between the genomic-based and pedigree-based inbreeding coefficients was weak (r=0.171; P<0.001). Mean genomic inbreeding estimates were greatest for Jersey (0.173) and least for Hereford (0.051). The pair-wise breed fixation index (F st) ranged from 0.049 (Limousin and Charolais) to 0.165 (Hereford and Jersey). In conclusion, substantial genetic variation exists among breeds commercially used in Ireland. Thus custom-mating strategies would be successful in maximising the exploitation of heterosis in crossbreeding strategies.
Collapse
|
19
|
Randhawa IAS, Khatkar MS, Thomson PC, Raadsma HW. A Meta-Assembly of Selection Signatures in Cattle. PLoS One 2016; 11:e0153013. [PMID: 27045296 PMCID: PMC4821596 DOI: 10.1371/journal.pone.0153013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Since domestication, significant genetic improvement has been achieved for many traits of commercial importance in cattle, including adaptation, appearance and production. In response to such intense selection pressures, the bovine genome has undergone changes at the underlying regions of functional genetic variants, which are termed “selection signatures”. This article reviews 64 recent (2009–2015) investigations testing genomic diversity for departure from neutrality in worldwide cattle populations. In particular, we constructed a meta-assembly of 16,158 selection signatures for individual breeds and their archetype groups (European, African, Zebu and composite) from 56 genome-wide scans representing 70,743 animals of 90 pure and crossbred cattle breeds. Meta-selection-scores (MSS) were computed by combining published results at every given locus, within a sliding window span. MSS were adjusted for common samples across studies and were weighted for significance thresholds across and within studies. Published selection signatures show extensive coverage across the bovine genome, however, the meta-assembly provides a consensus profile of 263 genomic regions of which 141 were unique (113 were breed-specific) and 122 were shared across cattle archetypes. The most prominent peaks of MSS represent regions under selection across multiple populations and harboured genes of known major effects (coat color, polledness and muscle hypertrophy) and genes known to influence polygenic traits (stature, adaptation, feed efficiency, immunity, behaviour, reproduction, beef and dairy production). As the first meta-assembly of selection signatures, it offers novel insights about the hotspots of selective sweeps in the bovine genome, and this method could equally be applied to other species.
Collapse
Affiliation(s)
- Imtiaz A. S. Randhawa
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
- * E-mail:
| | - Mehar S. Khatkar
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| | - Peter C. Thomson
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| | - Herman W. Raadsma
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| |
Collapse
|
20
|
Joost S, Bruford MW. Editorial: Advances in Farm Animal Genomic Resources. Front Genet 2015; 6:333. [PMID: 26635869 PMCID: PMC4656841 DOI: 10.3389/fgene.2015.00333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/04/2015] [Indexed: 01/12/2023] Open
Affiliation(s)
- Stéphane Joost
- Laboratory of Geographic Information Systems, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Michael W Bruford
- School of Biosciences, Cardiff University Cardiff, UK ; Sustainable Places Research Institute, Cardiff University Cardiff, UK
| | | |
Collapse
|
21
|
Review: Sustainability of crossbreeding in developing countries; definitely not like crossing a meadow…. Animal 2015; 10:262-73. [PMID: 26503101 DOI: 10.1017/s175173111500213x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Crossbreeding, considering either terminal or rotational crossing, synthetic breed creation or breed replacement, is often promoted as an efficient strategy to increase farmers' income through the improvement of productivity of local livestock in developing countries. Sustainability of crossbreeding is however frequently challenged by constraints such as poor adaptation to the local environment or lack of logistic support. In this review, we investigate factors that may influence the long-term success or the failure of crossbreeding programs, based on the scientific literature and country reports submitted for The Second Report on the State of the World's Animal Genetic Resources for Food and Agriculture. Crossbreeding activities vary widely across species and countries. Its sustainability is dependent on different prerequisites such as continual access to adequate breeding stock (especially after the end of externally funded crossbreeding projects), the opportunity of improved livestock to express their genetic potential (e.g. through providing proper inputs) and integration within a reliable market chain. As formal crossbreeding programs are often associated with adoption of other technologies, they can be a catalyst for innovation and development for smallholders. Given the increasing global demand for animal products, as well as the potential environmental consequences of climate change, there is a need for practical research to improve the implementation of long-term crossbreeding programs in developing countries.
Collapse
|