1
|
Khongmaluan M, Aesomnuk W, Dumhai R, Pitaloka MK, Xiao Y, Xia R, Kraithong T, Phonsatta N, Panya A, Ruanjaichon V, Wanchana S, Arikit S. Whole-Genome Resequencing Identifies SNPs in Sucrose Synthase and Sugar Transporter Genes Associated with Sweetness in Coconut. PLANTS (BASEL, SWITZERLAND) 2024; 13:2548. [PMID: 39339523 PMCID: PMC11434861 DOI: 10.3390/plants13182548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Coconut (Cocos nucifera L.) is an important agricultural commodity with substantial economic and nutritional value, widely used for various products, including coconut water. The sweetness is an important quality trait of coconut water, which is influenced by genetic and environmental factors. In this study, we utilized next-generation sequencing to identify genetic variations in the coconut genome associated with the sweetness of coconut water. Whole-genome resequencing of 49 coconut accessions, including diverse germplasm and an F2 population of 81 individuals, revealed ~27 M SNPs and ~1.5 M InDels. Sugar content measured by °Bx was highly variable across all accessions tested, with dwarf varieties generally sweeter. A comprehensive analysis of the sugar profiles revealed that sucrose was the major sugar contributing to sweetness. Allele mining of the 148 genes involved in sugar metabolism and transport and genotype-phenotype association tests revealed two significant SNPs in the hexose carrier protein (Cnu01G018720) and sucrose synthase (Cnu09G011120) genes associated with the higher sugar content in both the germplasm and F2 populations. This research provides valuable insights into the genetic basis of coconut sweetness and offers molecular markers for breeding programs aimed at improving coconut water quality. The identified variants can improve the selection process in breeding high-quality sweet coconut varieties and thus support the economic sustainability of coconut cultivation.
Collapse
Affiliation(s)
- Manlika Khongmaluan
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Wanchana Aesomnuk
- Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Reajina Dumhai
- Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Mutiara K Pitaloka
- Research Center for Applied Botany, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM 46, Bogor 16911, Indonesia
| | - Yong Xiao
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou 571339, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Tippaya Kraithong
- Chumphon Horticulture Research Center, Department of Agriculture, Bangkok 10900, Thailand
| | - Natthaporn Phonsatta
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Atikorn Panya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
2
|
Zeng Z, Wang R, Wang J, Chen Y, Wang Y, Song Z, Zhang W, Qiong L. Development and validation of sex-linked molecular markers for rapid and accurate identification of male and female Hippophae tibetana plants. Sci Rep 2024; 14:19243. [PMID: 39164317 PMCID: PMC11336215 DOI: 10.1038/s41598-024-69918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Hippophae tibetana, one of the highest-altitude woody plants endemic to the Qinghai-Tibet Plateau, primarily thrives on riverbanks formed by glacial meltwater. As a dioecious species, it demonstrates significant ecological and economic value in extreme alpine environments. However, the lack of sex identification techniques outside of the flowering period severely limits research on sex ratio, differentiation, and breeding. There is an urgent need to develop effective sex-linked molecular markers that are independent of developmental stages, but current research in this area remains limited. This study developed a set of accurate sex-linked molecular markers for the rapid identification of male and female individuals of H. tibetana. Through whole-genome resequencing of 32 sexually differentiated H. tibetana samples, this study offers strong evidence supporting chromosome 2 as the sex chromosome and successfully identified key loci related to sex determination on this chromosome. Utilizing these loci, we, for the first time, developed three reliable pairs of sex-specific molecular markers, which exhibited high accuracy during validation across various geographic populations, offering an effective tool for the sex identification of H. tibetana. Additionally, this study lays the groundwork for further research into the mechanisms of sex determination and the evolution of sex chromosomes in H. tibetana.
Collapse
Affiliation(s)
- Zhefei Zeng
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, 850000, China
| | - Ruoqiu Wang
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Junwei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, 850000, China
| | - Yonghao Chen
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, 850000, China
| | - Yuguo Wang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhiping Song
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wenju Zhang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - La Qiong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
3
|
Shu M, Moran EV. Identifying genetic variation associated with environmental gradients and drought-tolerance phenotypes in ponderosa pine. Ecol Evol 2023; 13:e10620. [PMID: 37841219 PMCID: PMC10576020 DOI: 10.1002/ece3.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
As climate changes, understanding the genetic basis of local adaptation in plants becomes an ever more pressing issue. Combining genotype-environment association (GEA) with genotype-phenotype association (GPA) analysis has an exciting potential to uncover the genetic basis of environmental responses. We use these approaches to identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individuals from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained after filtering for proximity to genes and used in our association analyses. We found 1374 associated with five major climate variables, with the largest number (1151) associated with April 1st snowpack. We also conducted a greenhouse study with various drought-tolerance traits measured in first-year seedlings of a subset of the genotyped trees grown in the greenhouse. 796 SNPs were associated with control-condition trait values, while 1149 were associated with responsiveness of these traits to drought. While no individual SNPs were associated with both the environmental variables and the measured traits, several annotated genes were associated with both, particularly those involved in cell wall formation, biotic and abiotic stress responses, and ubiquitination. However, the functions of many of the associated genes have not yet been determined due to the lack of gene annotation information for conifers. Future studies are needed to assess the developmental roles and ecological significance of these unknown genes.
Collapse
Affiliation(s)
- Mengjun Shu
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Emily V. Moran
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
4
|
Donkpegan ASL, Bernard A, Barreneche T, Quero-García J, Bonnet H, Fouché M, Le Dantec L, Wenden B, Dirlewanger E. Genome-wide association mapping in a sweet cherry germplasm collection ( Prunus avium L.) reveals candidate genes for fruit quality traits. HORTICULTURE RESEARCH 2023; 10:uhad191. [PMID: 38239559 PMCID: PMC10794993 DOI: 10.1093/hr/uhad191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/12/2023] [Indexed: 01/22/2024]
Abstract
In sweet cherry (Prunus avium L.), large variability exists for various traits related to fruit quality. There is a need to discover the genetic architecture of these traits in order to enhance the efficiency of breeding strategies for consumer and producer demands. With this objective, a germplasm collection consisting of 116 sweet cherry accessions was evaluated for 23 agronomic fruit quality traits over 2-6 years, and characterized using a genotyping-by-sequencing approach. The SNP coverage collected was used to conduct a genome-wide association study using two multilocus models and three reference genomes. We identified numerous SNP-trait associations for global fruit size (weight, width, and thickness), fruit cracking, fruit firmness, and stone size, and we pinpointed several candidate genes involved in phytohormone, calcium, and cell wall metabolisms. Finally, we conducted a precise literature review focusing on the genetic architecture of fruit quality traits in sweet cherry to compare our results with potential colocalizations of marker-trait associations. This study brings new knowledge of the genetic control of important agronomic traits related to fruit quality, and to the development of marker-assisted selection strategies targeted towards the facilitation of breeding efforts.
Collapse
Affiliation(s)
- Armel S L Donkpegan
- UMR BFP, INRAE, University of Bordeaux, 71 Avenue Edouard
Bourlaux, F-33882 Villenave d’Ornon, France
- UMR BOA, SYSAAF, Centre INRAE Val de Loire, 37380
Nouzilly, France
| | - Anthony Bernard
- UMR BFP, INRAE, University of Bordeaux, 71 Avenue Edouard
Bourlaux, F-33882 Villenave d’Ornon, France
| | - Teresa Barreneche
- UMR BFP, INRAE, University of Bordeaux, 71 Avenue Edouard
Bourlaux, F-33882 Villenave d’Ornon, France
| | - José Quero-García
- UMR BFP, INRAE, University of Bordeaux, 71 Avenue Edouard
Bourlaux, F-33882 Villenave d’Ornon, France
| | - Hélène Bonnet
- UMR BFP, INRAE, University of Bordeaux, 71 Avenue Edouard
Bourlaux, F-33882 Villenave d’Ornon, France
| | - Mathieu Fouché
- UMR BFP, INRAE, University of Bordeaux, 71 Avenue Edouard
Bourlaux, F-33882 Villenave d’Ornon, France
| | - Loïck Le Dantec
- UMR BFP, INRAE, University of Bordeaux, 71 Avenue Edouard
Bourlaux, F-33882 Villenave d’Ornon, France
| | - Bénédicte Wenden
- UMR BFP, INRAE, University of Bordeaux, 71 Avenue Edouard
Bourlaux, F-33882 Villenave d’Ornon, France
| | - Elisabeth Dirlewanger
- UMR BFP, INRAE, University of Bordeaux, 71 Avenue Edouard
Bourlaux, F-33882 Villenave d’Ornon, France
| |
Collapse
|
5
|
Muñoz-Espinoza C, Meneses M, Hinrichsen P. Transcriptomic Approach for Global Distribution of SNP/Indel and Plant Genotyping. Methods Mol Biol 2023; 2638:147-164. [PMID: 36781640 DOI: 10.1007/978-1-0716-3024-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Single Nucleotide Polymorphisms (SNPs) are the most common structural variants found in any genome. They have been used for different genetic studies, from the understanding of genetic structure of populations to the development of breeding selection markers. In this chapter we present the use of transcriptomic data obtained from contrasting phenotypes for a target trait, in searching of SNPs and insertions/deletions (InDels). This approach has the advantage that the identified markers are in or close to differentially expressed genes, and so they have higher chances to tag the genes underlying the phenotypic expression of a particular trait.
Collapse
Affiliation(s)
| | - Marco Meneses
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Patricio Hinrichsen
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile.
| |
Collapse
|
6
|
Liu JJ, Schoettle AW, Sniezko RA, Williams H, Zamany A, Rancourt B. Fine dissection of limber pine resistance to Cronartium ribicola using targeted sequencing of the NLR family. BMC Genomics 2021; 22:567. [PMID: 34294045 PMCID: PMC8299668 DOI: 10.1186/s12864-021-07885-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains (NLR) make up one of most important resistance (R) families for plants to resist attacks from various pathogens and pests. The available transcriptomes of limber pine (Pinus flexilis) allow us to characterize NLR genes and related resistance gene analogs (RGAs) in host resistance against Cronartium ribicola, the causal fungal pathogen of white pine blister rust (WPBR) on five-needle pines throughout the world. We previously mapped a limber pine major gene locus (Cr4) that confers complete resistance to C. ribicola on the Pinus consensus linkage group 8 (LG-8). However, genetic distribution of NLR genes as well as their divergence between resistant and susceptible alleles are still unknown. RESULTS To identify NLR genes at the Cr4 locus, the present study re-sequenced a total of 480 RGAs using targeted sequencing in a Cr4-segregated seed family. Following a call of single nucleotide polymorphisms (SNPs) and genetic mapping, a total of 541 SNPs from 155 genes were mapped across 12 LGs. Three putative NLR genes were newly mapped in the Cr4 region, including one that co-segregated with Cr4. The tight linkage of NLRs with Cr4-controlled phenotypes was further confirmed by bulked segregation analysis (BSA) using extreme-phenotype genome-wide association study (XP-GWAS) for significance test. Local tandem duplication in the Cr4 region was further supported by syntenic analysis using the sugar pine genome sequence. Significant gene divergences have been observed in the NLR family, revealing that diversifying selection pressures are relatively higher in local duplicated genes. Most genes showed similar expression patterns at low levels, but some were affected by genetic background related to disease resistance. Evidence from fine genetic dissection, evolutionary analysis, and expression profiling suggests that two NLR genes are the most promising candidates for Cr4 against WPBR. CONCLUSION This study provides fundamental insights into genetic architecture of the Cr4 locus as well as a set of NLR variants for marker-assisted selection in limber pine breeding. Novel NLR genes were identified at the Cr4 locus and the Cr4 candidates will aid deployment of this R gene in combination with other major/minor genes in the limber pine breeding program.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO 80526 USA
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, Oregon, 97424 USA
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Benjamin Rancourt
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| |
Collapse
|
7
|
Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM. Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience. PLANTS (BASEL, SWITZERLAND) 2021; 10:1347. [PMID: 34371550 PMCID: PMC8309169 DOI: 10.3390/plants10071347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022]
Abstract
Fruit trees provide essential nutrients to humans by contributing to major agricultural outputs and economic growth globally. However, major constraints to sustainable agricultural productivity are the uncontrolled proliferation of the population, and biotic and abiotic stresses. Tree mutation breeding has been substantially improved using different physical and chemical mutagens. Nonetheless, tree plant breeding has certain crucial bottlenecks including a long life cycle, ploidy level, occurrence of sequence polymorphisms, nature of parthenocarpic fruit development and linkage. Genetic engineering of trees has focused on boosting quality traits such as productivity, wood quality, and resistance to biotic and abiotic stresses. Recent technological advances in genome editing provide a unique opportunity for the genetic improvement of woody plants. This review examines application of the CRISPR-Cas system to reduce disease susceptibility, alter plant architecture, enhance fruit quality, and improve yields. Examples are discussed of the contemporary CRISPR-Cas system to engineer easily scorable PDS genes, modify lignin, and to alter the flowering onset, fertility, tree architecture and certain biotic stresses.
Collapse
Affiliation(s)
- Muhammad Naeem Sattar
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - S. Mohan Jain
- Department of Agricultural Sciences, PL-27, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
8
|
Chen M, Fan W, Ji F, Hua H, Liu J, Yan M, Ma Q, Fan J, Wang Q, Zhang S, Liu G, Sun Z, Tian C, Zhao F, Zheng J, Zhang Q, Chen J, Qiu J, Wei X, Chen Z, Zhang P, Pei D, Yang J, Huang X. Genome-wide identification of agronomically important genes in outcrossing crops using OutcrossSeq. MOLECULAR PLANT 2021; 14:556-570. [PMID: 33429094 DOI: 10.1016/j.molp.2021.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 05/27/2023]
Abstract
Many important crops (e.g., tuber, root, and tree crops) are cross-pollinating. For these crops, no inbred lines are available for genetic study and breeding because they are self-incompatible, clonally propagated, or have a long generation time, making the identification of agronomically important genes difficult, particularly in crops with a complex autopolyploid genome. In this study, we developed a method, OutcrossSeq, for mapping agronomically important loci in outcrossing crops based on whole-genome low-coverage resequencing of a large genetic population, and designed three computation algorithms in OutcrossSeq for different types of outcrossing populations. We applied OutcrossSeq to a tuberous root crop (sweet potato, autopolyploid), a tree crop (walnut tree, highly heterozygous diploid), and hybrid crops (double-cross populations) to generate high-density genotype maps for the outcrossing populations, which enable precise identification of genomic loci underlying important agronomic traits. Candidate causative genes at these loci were detected based on functional clues. Taken together, our results indicate that OutcrossSeq is a robust and powerful method for identifying agronomically important genes in heterozygous species, including polyploids, in a cost-efficient way. The OutcrossSeq software and its instruction manual are available for downloading at www.xhhuanglab.cn/tool/OutcrossSeq.html.
Collapse
Affiliation(s)
- Mengjiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Weijuan Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Feiyang Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Hua Hua
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Qingguo Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jiongjiong Fan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shufeng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Guiling Liu
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Zhe Sun
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Changgeng Tian
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Fengling Zhao
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Jianli Zheng
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ziru Chen
- National Genomics Data Center, Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Zhang
- CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
9
|
Reyes-Herrera PH, Muñoz-Baena L, Velásquez-Zapata V, Patiño L, Delgado-Paz OA, Díaz-Diez CA, Navas-Arboleda AA, Cortés AJ. Inheritance of Rootstock Effects in Avocado ( Persea americana Mill.) cv. Hass. FRONTIERS IN PLANT SCIENCE 2020; 11:555071. [PMID: 33424874 PMCID: PMC7785968 DOI: 10.3389/fpls.2020.555071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/17/2020] [Indexed: 05/16/2023]
Abstract
Grafting is typically utilized to merge adapted seedling rootstocks with highly productive clonal scions. This process implies the interaction of multiple genomes to produce a unique tree phenotype. However, the interconnection of both genotypes obscures individual contributions to phenotypic variation (rootstock-mediated heritability), hampering tree breeding. Therefore, our goal was to quantify the inheritance of seedling rootstock effects on scion traits using avocado (Persea americana Mill.) cv. Hass as a model fruit tree. We characterized 240 diverse rootstocks from 8 avocado cv. Hass orchards with similar management in three regions of the province of Antioquia, northwest Andes of Colombia, using 13 microsatellite markers simple sequence repeats (SSRs). Parallel to this, we recorded 20 phenotypic traits (including morphological, biomass/reproductive, and fruit yield and quality traits) in the scions for 3 years (2015-2017). Relatedness among rootstocks was inferred through the genetic markers and inputted in a "genetic prediction" model to calculate narrow-sense heritabilities (h 2) on scion traits. We used three different randomization tests to highlight traits with consistently significant heritability estimates. This strategy allowed us to capture five traits with significant heritability values that ranged from 0.33 to 0.45 and model fits (r) that oscillated between 0.58 and 0.73 across orchards. The results showed significance in the rootstock effects for four complex harvest and quality traits (i.e., total number of fruits, number of fruits with exportation quality, and number of fruits discarded because of low weight or thrips damage), whereas the only morphological trait that had a significant heritability value was overall trunk height (an emergent property of the rootstock-scion interaction). These findings suggest the inheritance of rootstock effects, beyond root phenotype, on a surprisingly wide spectrum of scion traits in "Hass" avocado. They also reinforce the utility of polymorphic SSRs for relatedness reconstruction and genetic prediction of complex traits. This research is, up to date, the most cohesive evidence of narrow-sense inheritance of rootstock effects in a tropical fruit tree crop. Ultimately, our work highlights the importance of considering the rootstock-scion interaction to broaden the genetic basis of fruit tree breeding programs while enhancing our understanding of the consequences of grafting.
Collapse
Affiliation(s)
- Paula H. Reyes-Herrera
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI Tibaitatá, Mosquera, Colombia
| | - Laura Muñoz-Baena
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Valeria Velásquez-Zapata
- Department of Plant Pathology and Microbiology, Interdepartmental Bioinformatics and Computational Biology, Iowa State University, Ames, IA, United States
| | - Laura Patiño
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva, Rionegro, Colombia
| | - Oscar A. Delgado-Paz
- Facultad de Ingenierías, Universidad Católica de Oriente—UCO, Rionegro, Antioquia
| | - Cipriano A. Díaz-Diez
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva, Rionegro, Colombia
| | | | - Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva, Rionegro, Colombia
| |
Collapse
|
10
|
Cortés AJ, Restrepo-Montoya M, Bedoya-Canas LE. Modern Strategies to Assess and Breed Forest Tree Adaptation to Changing Climate. FRONTIERS IN PLANT SCIENCE 2020; 11:583323. [PMID: 33193532 PMCID: PMC7609427 DOI: 10.3389/fpls.2020.583323] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 05/02/2023]
Abstract
Studying the genetics of adaptation to new environments in ecologically and industrially important tree species is currently a major research line in the fields of plant science and genetic improvement for tolerance to abiotic stress. Specifically, exploring the genomic basis of local adaptation is imperative for assessing the conditions under which trees will successfully adapt in situ to global climate change. However, this knowledge has scarcely been used in conservation and forest tree improvement because woody perennials face major research limitations such as their outcrossing reproductive systems, long juvenile phase, and huge genome sizes. Therefore, in this review we discuss predictive genomic approaches that promise increasing adaptive selection accuracy and shortening generation intervals. They may also assist the detection of novel allelic variants from tree germplasm, and disclose the genomic potential of adaptation to different environments. For instance, natural populations of tree species invite using tools from the population genomics field to study the signatures of local adaptation. Conventional genetic markers and whole genome sequencing both help identifying genes and markers that diverge between local populations more than expected under neutrality, and that exhibit unique signatures of diversity indicative of "selective sweeps." Ultimately, these efforts inform the conservation and breeding status capable of pivoting forest health, ecosystem services, and sustainable production. Key long-term perspectives include understanding how trees' phylogeographic history may affect the adaptive relevant genetic variation available for adaptation to environmental change. Encouraging "big data" approaches (machine learning-ML) capable of comprehensively merging heterogeneous genomic and ecological datasets is becoming imperative, too.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, Rionegro, Colombia
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia – Sede Medellín, Medellín, Colombia
| | - Manuela Restrepo-Montoya
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia – Sede Medellín, Medellín, Colombia
| | - Larry E. Bedoya-Canas
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia – Sede Medellín, Medellín, Colombia
| |
Collapse
|
11
|
Omotayo AO, Aremu AO. Underutilized African indigenous fruit trees and food–nutrition security: Opportunities, challenges, and prospects. Food Energy Secur 2020. [DOI: 10.1002/fes3.220] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Abiodun Olusola Omotayo
- Food Security and Safety Niche Area Faculty of Natural and Agricultural Sciences North‐West University Mmabatho North West Province South Africa
| | - Adeyemi Oladapo Aremu
- Food Security and Safety Niche Area Faculty of Natural and Agricultural Sciences North‐West University Mmabatho North West Province South Africa
- Indigenous Knowledge Systems (IKS) Centre Faculty of Natural and Agricultural Sciences North West University Mmabatho North‐West Province South Africa
| |
Collapse
|
12
|
Sequencing of a Wild Apple ( Malus baccata) Genome Unravels the Differences Between Cultivated and Wild Apple Species Regarding Disease Resistance and Cold Tolerance. G3-GENES GENOMES GENETICS 2019; 9:2051-2060. [PMID: 31126974 PMCID: PMC6643876 DOI: 10.1534/g3.119.400245] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Malus baccata is one of four wild apple species that can hybridize with the cultivated apple species (Malus domestica). It is widely used in high-latitude apple-producing areas as a rootstock and breeding resource because of its disease resistance, and cold tolerance. A lack of a reference genome has limited the application of M. baccata for apple breeding. We present a draft reference genome for M. baccata. The assembled sequence consisting of 665 Mb, with a scaffold N50 value of 452 kb, included transposable elements (413 Mb) and 46,114 high-quality protein-coding genes. According to a genetic map derived from 390 sibling lines, 72% of the assembly and 85% of the putative genes were anchored to 17 linkage groups. Many of the M. baccata genes under positive selection pressure were associated with plant–pathogen interaction pathways. We identified 2,345 Transcription factor-encoding genes in 58 families in the M. baccata genome. Genes related to disease defense and cold tolerance were also identified. A total of 462 putative nucleotide-binding site (NBS)-leucine-rich-repeat (LRR) genes, 177 Receptor-like kinase (RLK) and 51 receptor-like proteins (RLP) genes were identified in this genome assembly. The M. baccata genome contained 3978 cold-regulated genes, and 50% of these gene promoter containing DREB motif which can be induced by CBF gene. We herein present the first M. baccata genome assembly, which may be useful for exploring genetic variations in diverse apple germplasm, and for facilitating marker-assisted breeding of new apple cultivars exhibiting resistance to disease and cold stress.
Collapse
|
13
|
Ma JQ, Jin JQ, Yao MZ, Ma CL, Xu YX, Hao WJ, Chen L. Quantitative Trait Loci Mapping for Theobromine and Caffeine Contents in Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13321-13327. [PMID: 30486648 DOI: 10.1021/acs.jafc.8b05355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding the genetic basis of theobromine and caffeine accumulation in the tea plant is important due to their contribution to tea flavor. Quantitative trait loci (QTL) analyses were carried out to identify genetic variants associated with theobromine and caffeine contents and ratio using a pseudo-testcross population derived from an intervarietal cross between two varieties of Camellia sinensis. A total of 10 QTL controlling caffeine content (CAF), theobromine content (TBR), sum of caffeine and theobromine (SCT), and caffeine-to-theobromine ratio (CTR) were identified over four measurement years. The major QTL controlling CAF, qCAF1, was mapped onto LG01 and validated across years, explaining an average of 20.1% of the phenotypic variance. The other QTL were detected in 1 or 2 years, and of them there were four, two, and three for TBR, SCT, and CTR, respectively. The present results provide valuable information for further fine mapping and cloning functional genes and for genetic improvement in tea plant.
Collapse
Affiliation(s)
- Jian-Qiang Ma
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Ji-Qiang Jin
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Chun-Lei Ma
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Yan-Xia Xu
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Wan-Jun Hao
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Liang Chen
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| |
Collapse
|
14
|
Smith HM, Smith BP, Morales NB, Moskwa S, Clingeleffer PR, Thomas MR. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLoS One 2018; 13:e0193121. [PMID: 29462210 PMCID: PMC5819801 DOI: 10.1371/journal.pone.0193121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/05/2018] [Indexed: 11/17/2022] Open
Abstract
Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.
Collapse
Affiliation(s)
- Harley M. Smith
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Brady P. Smith
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Norma B. Morales
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Sam Moskwa
- CSIRO Information Management & Technology, Clayton South, Victoria, Australia
| | | | - Mark R. Thomas
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| |
Collapse
|