1
|
Leclert V, Laurencin C, Ameli R, Hermier M, Flaus A, Prange S, Lesca G, Thobois S. Globus Pallidus Lesion With Iron Deposition and Dopaminergic Denervation in a Patient With a Pathogenic SLC6A1 Variant: A Case Report. Neurol Genet 2024; 10:e200136. [PMID: 38515990 PMCID: PMC10955334 DOI: 10.1212/nxg.0000000000200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 03/23/2024]
Abstract
Objectives SLC6A1-related disorders encompass heterogeneous neuropsychiatric manifestations through GABAergic dysregulation, without any specific abnormalities on brain MRI, nor evidence of dopaminergic cell loss on I123-FP-β-CIT SPECT. We report here a case of globus pallidus lesions and dopaminergic denervation in a patient with a pathogenic SLC6A1 variant. Methods A 26-year-old female patient with intellectual disability, behavioral, and psychiatric disorders treated by neuroleptics for many years developed a parkinsonian syndrome associated with mild hand dystonia and chorea. A 3T brain MRI and I123-FP-β-CIT SPECT were performed. Results MRI of the brain found bilateral pallidal lesions consistent with neurodegeneration with iron accumulation. The I123-FP-β-CIT SPECT showed bilateral striatal presynaptic dopaminergic denervation. Whole-genome sequencing revealed a pathogenic SLC6A1 de novo variant. No additional variant was found in any of the genes responsible for Neurodegeneration with Brain Iron Accumulation (NBIA). Discussion This is a description of dopaminergic denervation and globus pallidus lesions with iron accumulation related to a SLC6A1 pathogenic variant. These findings expand the phenotype of SLC6A1-related disorder and suggest that it could be considered as a differential diagnosis of NBIA.
Collapse
Affiliation(s)
- Victoire Leclert
- From the Department of Neurology C (V.L., C.L., S.P., S.T.), Expert Parkinson Center NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron; Lyon Neuroscience Research Center (C.L., A.F.), UMR5292, INSERM U1028/CNRS; Department of Neuroradiology (R.A., M.H.); Nuclear Medicine Department (A.F.), Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital; Marc Jeannerod Cognitive Neuroscience Institute (S.P., S.T.), CNRS, UMR 5229, Bron; Faculté de Médecine et Maïeutique Lyon Sud Charles-Mérieux (S.P., G.L., S.T.), Université de Lyon, Université Claude-Bernard Lyon I; Department of Genetics (G.L.), Hospices Civils de Lyon, Mother Child Hospital, Bron; and Physiopathology and Genetics of Neurons and Muscles (G.L.), UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Chloe Laurencin
- From the Department of Neurology C (V.L., C.L., S.P., S.T.), Expert Parkinson Center NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron; Lyon Neuroscience Research Center (C.L., A.F.), UMR5292, INSERM U1028/CNRS; Department of Neuroradiology (R.A., M.H.); Nuclear Medicine Department (A.F.), Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital; Marc Jeannerod Cognitive Neuroscience Institute (S.P., S.T.), CNRS, UMR 5229, Bron; Faculté de Médecine et Maïeutique Lyon Sud Charles-Mérieux (S.P., G.L., S.T.), Université de Lyon, Université Claude-Bernard Lyon I; Department of Genetics (G.L.), Hospices Civils de Lyon, Mother Child Hospital, Bron; and Physiopathology and Genetics of Neurons and Muscles (G.L.), UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Roxana Ameli
- From the Department of Neurology C (V.L., C.L., S.P., S.T.), Expert Parkinson Center NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron; Lyon Neuroscience Research Center (C.L., A.F.), UMR5292, INSERM U1028/CNRS; Department of Neuroradiology (R.A., M.H.); Nuclear Medicine Department (A.F.), Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital; Marc Jeannerod Cognitive Neuroscience Institute (S.P., S.T.), CNRS, UMR 5229, Bron; Faculté de Médecine et Maïeutique Lyon Sud Charles-Mérieux (S.P., G.L., S.T.), Université de Lyon, Université Claude-Bernard Lyon I; Department of Genetics (G.L.), Hospices Civils de Lyon, Mother Child Hospital, Bron; and Physiopathology and Genetics of Neurons and Muscles (G.L.), UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Marc Hermier
- From the Department of Neurology C (V.L., C.L., S.P., S.T.), Expert Parkinson Center NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron; Lyon Neuroscience Research Center (C.L., A.F.), UMR5292, INSERM U1028/CNRS; Department of Neuroradiology (R.A., M.H.); Nuclear Medicine Department (A.F.), Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital; Marc Jeannerod Cognitive Neuroscience Institute (S.P., S.T.), CNRS, UMR 5229, Bron; Faculté de Médecine et Maïeutique Lyon Sud Charles-Mérieux (S.P., G.L., S.T.), Université de Lyon, Université Claude-Bernard Lyon I; Department of Genetics (G.L.), Hospices Civils de Lyon, Mother Child Hospital, Bron; and Physiopathology and Genetics of Neurons and Muscles (G.L.), UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Anthime Flaus
- From the Department of Neurology C (V.L., C.L., S.P., S.T.), Expert Parkinson Center NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron; Lyon Neuroscience Research Center (C.L., A.F.), UMR5292, INSERM U1028/CNRS; Department of Neuroradiology (R.A., M.H.); Nuclear Medicine Department (A.F.), Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital; Marc Jeannerod Cognitive Neuroscience Institute (S.P., S.T.), CNRS, UMR 5229, Bron; Faculté de Médecine et Maïeutique Lyon Sud Charles-Mérieux (S.P., G.L., S.T.), Université de Lyon, Université Claude-Bernard Lyon I; Department of Genetics (G.L.), Hospices Civils de Lyon, Mother Child Hospital, Bron; and Physiopathology and Genetics of Neurons and Muscles (G.L.), UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Stephane Prange
- From the Department of Neurology C (V.L., C.L., S.P., S.T.), Expert Parkinson Center NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron; Lyon Neuroscience Research Center (C.L., A.F.), UMR5292, INSERM U1028/CNRS; Department of Neuroradiology (R.A., M.H.); Nuclear Medicine Department (A.F.), Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital; Marc Jeannerod Cognitive Neuroscience Institute (S.P., S.T.), CNRS, UMR 5229, Bron; Faculté de Médecine et Maïeutique Lyon Sud Charles-Mérieux (S.P., G.L., S.T.), Université de Lyon, Université Claude-Bernard Lyon I; Department of Genetics (G.L.), Hospices Civils de Lyon, Mother Child Hospital, Bron; and Physiopathology and Genetics of Neurons and Muscles (G.L.), UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Gaetan Lesca
- From the Department of Neurology C (V.L., C.L., S.P., S.T.), Expert Parkinson Center NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron; Lyon Neuroscience Research Center (C.L., A.F.), UMR5292, INSERM U1028/CNRS; Department of Neuroradiology (R.A., M.H.); Nuclear Medicine Department (A.F.), Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital; Marc Jeannerod Cognitive Neuroscience Institute (S.P., S.T.), CNRS, UMR 5229, Bron; Faculté de Médecine et Maïeutique Lyon Sud Charles-Mérieux (S.P., G.L., S.T.), Université de Lyon, Université Claude-Bernard Lyon I; Department of Genetics (G.L.), Hospices Civils de Lyon, Mother Child Hospital, Bron; and Physiopathology and Genetics of Neurons and Muscles (G.L.), UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Stephane Thobois
- From the Department of Neurology C (V.L., C.L., S.P., S.T.), Expert Parkinson Center NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron; Lyon Neuroscience Research Center (C.L., A.F.), UMR5292, INSERM U1028/CNRS; Department of Neuroradiology (R.A., M.H.); Nuclear Medicine Department (A.F.), Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital; Marc Jeannerod Cognitive Neuroscience Institute (S.P., S.T.), CNRS, UMR 5229, Bron; Faculté de Médecine et Maïeutique Lyon Sud Charles-Mérieux (S.P., G.L., S.T.), Université de Lyon, Université Claude-Bernard Lyon I; Department of Genetics (G.L.), Hospices Civils de Lyon, Mother Child Hospital, Bron; and Physiopathology and Genetics of Neurons and Muscles (G.L.), UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
2
|
Lopes-Marques M, Mort M, Carneiro J, Azevedo A, Amaro AP, Cooper DN, Azevedo L. Meta-analysis of 46,000 germline de novo mutations linked to human inherited disease. Hum Genomics 2024; 18:20. [PMID: 38395944 PMCID: PMC10885371 DOI: 10.1186/s40246-024-00587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND De novo mutations (DNMs) are variants that occur anew in the offspring of noncarrier parents. They are not inherited from either parent but rather result from endogenous mutational processes involving errors of DNA repair/replication. These spontaneous errors play a significant role in the causation of genetic disorders, and their importance in the context of molecular diagnostic medicine has become steadily more apparent as more DNMs have been reported in the literature. In this study, we examined 46,489 disease-associated DNMs annotated by the Human Gene Mutation Database (HGMD) to ascertain their distribution across gene and disease categories. RESULTS Most disease-associated DNMs reported to date are found to be associated with developmental and psychiatric disorders, a reflection of the focus of sequencing efforts over the last decade. Of the 13,277 human genes in which DNMs have so far been found, the top-10 genes with the highest proportions of DNM relative to gene size were H3-3 A, DDX3X, CSNK2B, PURA, ZC4H2, STXBP1, SCN1A, SATB2, H3-3B and TUBA1A. The distribution of CADD and REVEL scores for both disease-associated DNMs and those mutations not reported to be de novo revealed a trend towards higher deleteriousness for DNMs, consistent with the likely lower selection pressure impacting them. This contrasts with the non-DNMs, which are presumed to have been subject to continuous negative selection over multiple generations. CONCLUSION This meta-analysis provides important information on the occurrence and distribution of disease-associated DNMs in association with heritable disease and should make a significant contribution to our understanding of this major type of mutation.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - João Carneiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - António Azevedo
- CHUdSA-Centro Hospitalar Universitário de Santo António, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Andreia P Amaro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Luísa Azevedo
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
3
|
Zhang W, Hu L, Huang X, Xie D, Wu J, Fu X, Liang D, Huang S. Whole-exome sequencing identified five novel de novo variants in patients with unexplained intellectual disability. J Clin Lab Anal 2022; 36:e24587. [PMID: 35837997 PMCID: PMC9459325 DOI: 10.1002/jcla.24587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Intellectual disability (ID) represents a neurodevelopmental disorder, which is characterized by marked defects in the intellectual function and adaptive behavior, with an onset during the developmental period. ID is mainly caused by genetic factors, and it is extremely genetically heterogeneous. This study aims to identify the genetic cause of ID using trio‐WES analysis. Methods We recruited four pediatric patients with unexplained ID from non‐consanguineous families, who presented at the Department of Pediatrics, Guizhou Provincial People's Hospital. Whole‐exome sequencing (WES) and Sanger sequencing validation were performed in the patients and their unaffected parents. Furthermore, conservative analysis and protein structural and functional prediction were performed on the identified pathogenic variants. Results We identified five novel de novo mutations from four known ID‐causing genes in the four included patients, namely COL4A1 (c.2786T>A, p.V929D and c.2797G>A, p.G933S), TBR1 (c.1639_1640insCCCGCAGTCC, p.Y553Sfs*124), CHD7 (c.7013A>T, p.Q2338L), and TUBA1A (c.1350del, p.E450Dfs*34). These mutations were all predicted to be deleterious and were located at highly conserved domains that might affect the structure and function of these proteins. Conclusion Our findings contribute to expanding the mutational spectrum of ID‐related genes and help to deepen the understanding of the genetic causes and heterogeneity of ID.
Collapse
Affiliation(s)
- Wenqiu Zhang
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Li Hu
- Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Xinyi Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Xie
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Jiangfen Wu
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Xiaoling Fu
- Department of Pediatrics, Guizhou Provincial People's hospital, Guiyang, China
| | - Daiyi Liang
- Department of Neurology, Guizhou Provincial People's hospital, Guiyang, China
| | - Shengwen Huang
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
4
|
Fischer FP, Kasture AS, Hummel T, Sucic S. Molecular and Clinical Repercussions of GABA Transporter 1 Variants Gone Amiss: Links to Epilepsy and Developmental Spectrum Disorders. Front Mol Biosci 2022; 9:834498. [PMID: 35295842 PMCID: PMC7612498 DOI: 10.3389/fmolb.2022.834498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) is the first member of the solute carrier 6 (SLC6) protein superfamily. GAT-1 (SLC6A1) is one of the main GABA transporters in the central nervous system. Its principal physiological role is retrieving GABA from the synapse into neurons and astrocytes, thus swiftly terminating neurotransmission. GABA is a key inhibitory neurotransmitter and shifts in GABAergic signaling can lead to pathological conditions, from anxiety and epileptic seizures to schizophrenia. Point mutations in the SLC6A1 gene frequently give rise to epilepsy, intellectual disability or autism spectrum disorders in the afflicted individuals. The mechanistic routes underlying these are still fairly unclear. Some loss-of-function variants impair the folding and intracellular trafficking of the protein (thus retaining the transporter in the endoplasmic reticulum compartment), whereas others, despite managing to reach their bona fide site of action at the cell surface, nonetheless abolish GABA transport activity (plausibly owing to structural/conformational defects). Whatever the molecular culprit(s), the physiological aftermath transpires into the absence of functional transporters, which in turn perturbs GABAergic actions. Dozens of mutations in the kin SLC6 family members are known to exhort protein misfolding. Such events typically elicit severe ailments in people, e.g., infantile parkinsonism-dystonia or X-linked intellectual disability, in the case of dopamine and creatine transporters, respectively. Flaws in protein folding can be rectified by small molecules known as pharmacological and/or chemical chaperones. The search for such apt remedies calls for a systematic investigation and categorization of the numerous disease-linked variants, by biochemical and pharmacological means in vitro (in cell lines and primary neuronal cultures) and in vivo (in animal models). We here give special emphasis to the utilization of the fruit fly Drosophila melanogaster as a versatile model in GAT-1-related studies. Jointly, these approaches can portray indispensable insights into the molecular factors underlying epilepsy, and ultimately pave the way for contriving efficacious therapeutic options for patients harboring pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Ameya S. Kasture
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Trelles MP, Levy T, Lerman B, Siper P, Lozano R, Halpern D, Walker H, Zweifach J, Frank Y, Foss-Feig J, Kolevzon A, Buxbaum J. Individuals with FOXP1 syndrome present with a complex neurobehavioral profile with high rates of ADHD, anxiety, repetitive behaviors, and sensory symptoms. Mol Autism 2021; 12:61. [PMID: 34588003 PMCID: PMC8482569 DOI: 10.1186/s13229-021-00469-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Background FOXP1 syndrome is an autosomal dominant neurodevelopmental disorder characterized by intellectual disability, developmental delay, speech and language delays, and externalizing behaviors. We previously evaluated nine children and adolescents with FOXP1 syndrome to better characterize its phenotype. We identified specific areas of interest to be further explored, namely autism spectrum disorder (ASD) and internalizing and externalizing behaviors.
Methods Here, we assess a prospective cohort of additional 17 individuals to expand our initial analyses and focus on these areas of interest. An interdisciplinary group of clinicians evaluated neurodevelopmental, behavioral, and medical features in participants. We report results from this cohort both alone, and in combination with the previous cohort, where possible.
Results Previous observations of intellectual disability, motor delays, and language deficits were confirmed. In addition, 24% of the cohort met criteria for ASD. Seventy-five percent of individuals met DSM-5 criteria for attention-deficit/hyperactivity disorder and 38% for an anxiety disorder. Repetitive behaviors were almost universally present (95%) even without a diagnosis of ASD. Sensory symptoms, in particular sensory seeking, were common. Limitations As FOXP1 syndrome is a rare disorder, sample size is limited. Conclusions These findings have important implications for the treatment and care of individuals with FOXP1 syndrome. Notably, standardized testing for ASD showed high sensitivity, but low specificity, when compared to expert consensus diagnosis. Furthermore, many individuals in our cohort who received diagnoses of attention-deficit/hyperactivity disorder or anxiety disorder were not being treated for these symptoms; therefore, our findings suggest that there may be immediate areas for improvements in treatment for some individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00469-z.
Collapse
Affiliation(s)
- M Pilar Trelles
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bonnie Lerman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paige Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reymundo Lozano
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle Halpern
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Walker
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Zweifach
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yitzchak Frank
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
7
|
Dionne O, Corbin F. An "Omic" Overview of Fragile X Syndrome. BIOLOGY 2021; 10:433. [PMID: 34068266 PMCID: PMC8153138 DOI: 10.3390/biology10050433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder associated with a wide range of cognitive, behavioral and medical problems. It arises from the silencing of the fragile X mental retardation 1 (FMR1) gene and, consequently, in the absence of its encoded protein, FMRP (fragile X mental retardation protein). FMRP is a ubiquitously expressed and multifunctional RNA-binding protein, primarily considered as a translational regulator. Pre-clinical studies of the past two decades have therefore focused on this function to relate FMRP's absence to the molecular mechanisms underlying FXS physiopathology. Based on these data, successful pharmacological strategies were developed to rescue fragile X phenotype in animal models. Unfortunately, these results did not translate into humans as clinical trials using same therapeutic approaches did not reach the expected outcomes. These failures highlight the need to put into perspective the different functions of FMRP in order to get a more comprehensive understanding of FXS pathophysiology. This work presents a review of FMRP's involvement on noteworthy molecular mechanisms that may ultimately contribute to various biochemical alterations composing the fragile X phenotype.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC J1H 5H4, Canada;
| | | |
Collapse
|
8
|
Fell CW, Nagy V. Cellular Models and High-Throughput Screening for Genetic Causality of Intellectual Disability. Trends Mol Med 2021; 27:220-230. [PMID: 33397633 DOI: 10.1016/j.molmed.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Intellectual disabilities (ID) are a type of neurodevelopmental disorder (NDD). They can have a genetic cause, including an emerging class of ID centring around Rho GTPases, such as Ras-related C3 botulinum toxin substrate 1 (RAC1). Guidelines for establishing genetic causality include the use of cellular models, which often have morphological aberrations, a long-standing hallmark of ID. Disease cellular models can facilitate high-throughput screening (HTS) of chemical or genetic perturbations, which can provide translatable biological insight. Here, we discuss a class of IDs centring around RAC1. We review novel and established cellular models of ID, including mouse and human primary cells and reprogrammed or induced neurons. Finally, we review progress and remaining challenges in the adoption of HTS methodologies by the community studying neurological disorders.
Collapse
Affiliation(s)
- Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria.
| |
Collapse
|
9
|
Yang J, Liu A, He I, Bai Y. Bioinformatics Analysis Revealed Novel 3'UTR Variants Associated with Intellectual Disability. Genes (Basel) 2020; 11:genes11090998. [PMID: 32858868 PMCID: PMC7563394 DOI: 10.3390/genes11090998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (or miRNAs) are short nucleotide sequences (~17–22 bp long) that play important roles in gene regulation through targeting genes in the 3′untranslated regions (UTRs). Variants located in genomic regions might have different biological consequences in changing gene expression. Exonic variants (e.g., coding variant and 3′UTR variant) are often causative of diseases due to their influence on gene product. Variants harbored in the 3′UTR region where miRNAs perform their targeting function could potentially alter the binding relationships for target pairs, which could relate to disease causation. We gathered miRNA–mRNA targeting pairs from published studies and then employed the database of microRNA Target Site single nucleotide variants (SNVs) (dbMTS) to discover novel SNVs within the selected pairs. We identified a total of 183 SNVs for the 114 pairs of accurate miRNA–mRNA targeting pairs selected. Detailed bioinformatics analysis of the three genes with identified variants that were exclusively located in the 3′UTR section indicated their association with intellectual disability (ID). Our result showed an exceptionally high expression of GPR88 in brain tissues based on GTEx gene expression data, while WNT7A expression data were relatively high in brain tissues when compared to other tissues. Motif analysis for the 3′UTR region of WNT7A showed that five identified variants were well-conserved across three species (human, mouse, and rat); the motif that contains the variant identified in GPR88 is significant at the level of the 3′UTR of the human genome. Studies of pathways, protein–protein interactions, and relations to diseases further suggest potential association with intellectual disability of our discovered SNVs. Our results demonstrated that 3′UTR variants could change target interactions of miRNA–mRNA pairs in the context of their association with ID. We plan to automate the methods through developing a bioinformatics pipeline for identifying novel 3′UTR SNVs harbored by miRNA-targeted genes in the future.
Collapse
Affiliation(s)
- Junmeng Yang
- Shanghai Starriver Bilingual School, Shanghai 201100, China;
| | - Anna Liu
- Appleby College, Oakville, ON L6L3V7, Canada;
| | - Isabella He
- Pittsford Mendon High School, 472 Mendon Road, Pittsford, NY 14534, USA;
| | - Yongsheng Bai
- Department of Biology, Eastern Michigan University, 441 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Next-Gen Intelligent Science Training, Ann Arbor, MI 48105, USA
- Correspondence:
| |
Collapse
|
10
|
Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience 2020; 445:12-30. [PMID: 32730949 DOI: 10.1016/j.neuroscience.2020.07.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental disorders (NDDs) include a large number of conditions such as Fragile X syndrome, autism spectrum disorders and Down syndrome, among others. They are characterized by limitations in adaptive and social behaviors, as well as intellectual disability (ID). Whole-exome and whole-genome sequencing studies have highlighted a large number of NDD/ID risk genes. To dissect the genetic causes and underlying biological pathways, in vivo experimental validation of the effects of these mutations is needed. The fruit fly, Drosophila melanogaster, is an ideal model to study NDDs, with highly tractable genetics, combined with simple behavioral and circuit assays, permitting rapid medium-throughput screening of NDD/ID risk genes. Here, we review studies where the use of well-established assays to study mechanisms of learning and memory in Drosophila has permitted insights into molecular mechanisms underlying IDs. We discuss how technologies in the fly model, combined with a high degree of molecular and physiological conservation between flies and mammals, highlight the Drosophila system as an ideal model to study neurodevelopmental disorders, from genetics to behavior.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
11
|
Bem J, Brożko N, Chakraborty C, Lipiec MA, Koziński K, Nagalski A, Szewczyk ŁM, Wiśniewska MB. Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett 2019; 593:1654-1674. [PMID: 31218672 PMCID: PMC6772062 DOI: 10.1002/1873-3468.13502] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Canonical Wnt signaling, which is transduced by β-catenin and lymphoid enhancer factor 1/T cell-specific transcription factors (LEF1/TCFs), regulates many aspects of metazoan development and tissue renewal. Although much evidence has associated canonical Wnt/β-catenin signaling with mood disorders, the mechanistic links are still unknown. Many components of the canonical Wnt pathway are involved in cellular processes that are unrelated to classical canonical Wnt signaling, thus further blurring the picture. The present review critically evaluates the involvement of classical Wnt/β-catenin signaling in developmental processes that putatively underlie the pathology of mental illnesses. Particular attention is given to the roles of LEF1/TCFs, which have been discussed surprisingly rarely in this context. Highlighting recent discoveries, we propose that alterations in the activity of LEF1/TCFs, and particularly of transcription factor 7-like 2 (TCF7L2), result in defects previously associated with neuropsychiatric disorders, including imbalances in neurogenesis and oligodendrogenesis, the functional disruption of thalamocortical circuitry and dysfunction of the habenula.
Collapse
Affiliation(s)
- Joanna Bem
- Centre of New TechnologiesUniversity of WarsawPoland
| | - Nikola Brożko
- Centre of New TechnologiesUniversity of WarsawPoland
| | | | | | | | | | | | | |
Collapse
|
12
|
Bem J, Brożko N, Chakraborty C, Lipiec MA, Koziński K, Nagalski A, Szewczyk ŁM, Wiśniewska MB. Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett 2019. [PMID: 31218672 DOI: 10.1002/1873−3468.13502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Canonical Wnt signaling, which is transduced by β-catenin and lymphoid enhancer factor 1/T cell-specific transcription factors (LEF1/TCFs), regulates many aspects of metazoan development and tissue renewal. Although much evidence has associated canonical Wnt/β-catenin signaling with mood disorders, the mechanistic links are still unknown. Many components of the canonical Wnt pathway are involved in cellular processes that are unrelated to classical canonical Wnt signaling, thus further blurring the picture. The present review critically evaluates the involvement of classical Wnt/β-catenin signaling in developmental processes that putatively underlie the pathology of mental illnesses. Particular attention is given to the roles of LEF1/TCFs, which have been discussed surprisingly rarely in this context. Highlighting recent discoveries, we propose that alterations in the activity of LEF1/TCFs, and particularly of transcription factor 7-like 2 (TCF7L2), result in defects previously associated with neuropsychiatric disorders, including imbalances in neurogenesis and oligodendrogenesis, the functional disruption of thalamocortical circuitry and dysfunction of the habenula.
Collapse
Affiliation(s)
- Joanna Bem
- Centre of New Technologies, University of Warsaw, Poland
| | - Nikola Brożko
- Centre of New Technologies, University of Warsaw, Poland
| | | | | | - Kamil Koziński
- Centre of New Technologies, University of Warsaw, Poland
| | | | | | | |
Collapse
|