1
|
Wang Y, Ding P, Wang C, He S, Gao X, Yu B. RPI-GGCN: Prediction of RNA-Protein Interaction Based on Interpretability Gated Graph Convolution Neural Network and Co-Regularized Variational Autoencoders. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:7681-7695. [PMID: 38709606 DOI: 10.1109/tnnls.2024.3390935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
RNA-protein interactions (RPIs) play an important role in several fundamental cellular physiological processes, including cell motility, chromosome replication, transcription and translation, and signaling. Predicting RPI can guide the exploration of cellular biological functions, intervening in diseases, and designing drugs. Given this, this study proposes the RPI-gated graph convolutional network (RPI-GGCN) method for predicting RPI based on the gated graph convolutional neural network (GGCN) and co-regularized variational autoencoder (Co-VAE). First, different types of feature information were extracted from RNA and protein sequences by nine feature extraction methods. Second, Co-VAEs are used to eliminate the redundancy of fused features and generate optimal features. Finally, this study introduces gated cyclic units into graph convolutional networks (GCNs) to construct a model for RPI prediction, which efficiently extracts topological information and improves the model's interpretable feature learning and expression capabilities. In the fivefold cross-validation test, the RPI-GGCN method achieved prediction accuracies of 97.27%, 97.32%, 96.54%, 95.76%, and 94.98% on the RPI369, RPI488, RPI1446, RPI1807, and RPI2241 datasets. To test the generalization performance of the model, we used the model trained on RPI369 to predict the independent NPInter v3.0 dataset and achieved excellent performance in all six independent validation sets. By visualizing the RPI network graph based on the prediction results, we aim to provide a new perspective and reference for studying RPI mechanisms and exploring new RPIs. Extensive experimental results demonstrate that RPI-GGCN can provide an efficient, accurate, and stable RPI prediction method.
Collapse
|
2
|
Yang B, Lu H, Ran Y. Advancing non-alcoholic fatty liver disease prediction: a comprehensive machine learning approach integrating SHAP interpretability and multi-cohort validation. Front Endocrinol (Lausanne) 2024; 15:1450317. [PMID: 39439566 PMCID: PMC11493712 DOI: 10.3389/fendo.2024.1450317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) represents a major global health challenge, often undiagnosed because of suboptimal screening tools. Advances in machine learning (ML) offer potential improvements in predictive diagnostics, leveraging complex clinical datasets. Methods We utilized a comprehensive dataset from the Dryad database for model development and training and performed external validation using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020 cycles. Seven distinct ML models were developed and rigorously evaluated. Additionally, we employed the SHapley Additive exPlanations (SHAP) method to enhance the interpretability of the models, allowing for a detailed understanding of how each variable contributes to predictive outcomes. Results A total of 14,913 participants were eligible for this study. Among the seven constructed models, the light gradient boosting machine achieved the highest performance, with an area under the receiver operating characteristic curve of 0.90 in the internal validation set and 0.81 in the external NHANES validation cohort. In detailed performance metrics, it maintained an accuracy of 87%, a sensitivity of 92.9%, and an F1 score of 0.92. Key predictive variables identified included alanine aminotransferase, gammaglutamyl transpeptidase, triglyceride glucose-waist circumference, metabolic score for insulin resistance, and HbA1c, which are strongly associated with metabolic dysfunctions integral to NAFLD progression. Conclusions The integration of ML with SHAP interpretability provides a robust predictive tool for NAFLD, enhancing the early identification and potential management of the disease. The model's high accuracy and generalizability across diverse populations highlight its clinical utility, though future enhancements should include longitudinal data and lifestyle factors to refine risk assessments further.
Collapse
Affiliation(s)
- Bo Yang
- Department of Gastroenterology and Hepatology, Guizhou Aerospace Hospital, Zunyi, China
| | - Huaguan Lu
- Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Yinghui Ran
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Liu K, Geng S, Shen P, Zhao L, Zhou P, Liu W. Development and application of a machine learning-based predictive model for obstructive sleep apnea screening. Front Big Data 2024; 7:1353469. [PMID: 38817683 PMCID: PMC11137315 DOI: 10.3389/fdata.2024.1353469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Objective To develop a robust machine learning prediction model for the automatic screening and diagnosis of obstructive sleep apnea (OSA) using five advanced algorithms, namely Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), and Random Forest (RF) to provide substantial support for early clinical diagnosis and intervention. Methods We conducted a retrospective analysis of clinical data from 439 patients who underwent polysomnography at the Affiliated Hospital of Xuzhou Medical University between October 2019 and October 2022. Predictor variables such as demographic information [age, sex, height, weight, body mass index (BMI)], medical history, and Epworth Sleepiness Scale (ESS) were used. Univariate analysis was used to identify variables with significant differences, and the dataset was then divided into training and validation sets in a 4:1 ratio. The training set was established to predict OSA severity grading. The validation set was used to assess model performance using the area under the curve (AUC). Additionally, a separate analysis was conducted, categorizing the normal population as one group and patients with moderate-to-severe OSA as another. The same univariate analysis was applied, and the dataset was divided into training and validation sets in a 4:1 ratio. The training set was used to build a prediction model for screening moderate-to-severe OSA, while the validation set was used to verify the model's performance. Results Among the four groups, the LightGBM model outperformed others, with the top five feature importance rankings of ESS total score, BMI, sex, hypertension, and gastroesophageal reflux (GERD), where Age, ESS total score and BMI played the most significant roles. In the dichotomous model, RF is the best performer of the five models respectively. The top five ranked feature importance of the best-performing RF models were ESS total score, BMI, GERD, age and Dry mouth, with ESS total score and BMI being particularly pivotal. Conclusion Machine learning-based prediction models for OSA disease grading and screening prove instrumental in the early identification of patients with moderate-to-severe OSA, revealing pertinent risk factors and facilitating timely interventions to counter pathological changes induced by OSA. Notably, ESS total score and BMI emerge as the most critical features for predicting OSA, emphasizing their significance in clinical assessments. The dataset will be publicly available on my Github.
Collapse
Affiliation(s)
- Kang Liu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shi Geng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ping Shen
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Zhao
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peng Zhou
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wen Liu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Song J, Liu G, Jiang J. A novel prediction method for protein DNA-binding residues based on neighboring residue correlations. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Jiazhi Song
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, PR China
- College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
- Department of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, Jilin, PR China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, PR China
- Department of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, Jilin, PR China
| | - Jingqing Jiang
- College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| |
Collapse
|
5
|
Tseng Y, Mo S, Zeng Y, Zheng W, Song H, Zhong B, Luo F, Rong L, Liu J, Luo Z. Machine Learning Model in Predicting Sarcopenia in Crohn's Disease Based on Simple Clinical and Anthropometric Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010656. [PMID: 36612977 PMCID: PMC9819919 DOI: 10.3390/ijerph20010656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 05/26/2023]
Abstract
Sarcopenia is associated with increased morbidity and mortality in Crohn's disease. The present study is aimed at investigating the different diagnostic performance of different machine learning models in identifying sarcopenia in Crohn's disease. Patients diagnosed with Crohn's disease at our center provided clinical, anthropometric, and radiological data. The cross-sectional CT slice at L3 was used for segmentation and the calculation of body composition. The prevalence of sarcopenia was calculated, and the clinical parameters were compared. A total of 167 patients were included in the present study, of which 127 (76.0%) were male and 40 (24.0%) were female, with an average age of 36.1 ± 14.3 years old. Based on the previously defined cut-off value of sarcopenia, 118 (70.7%) patients had sarcopenia. Seven machine learning models were trained with the randomly allocated training cohort (80%) then evaluated on the validation cohort (20%). A comprehensive comparison showed that LightGBM was the most ideal diagnostic model, with an AUC of 0.933, AUCPR of 0.970, sensitivity of 72.7%, and specificity of 87.0%. The LightGBM model may facilitate a population management strategy with early identification of sarcopenia in Crohn's disease, while providing guidance for nutritional support and an alternative surveillance modality for long-term patient follow-up.
Collapse
Affiliation(s)
- Yujen Tseng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yanwei Zeng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huan Song
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bing Zhong
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lan Rong
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhongguang Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
6
|
Pepe G, Appierdo R, Carrino C, Ballesio F, Helmer-Citterich M, Gherardini PF. Artificial intelligence methods enhance the discovery of RNA interactions. Front Mol Biosci 2022; 9:1000205. [PMID: 36275611 PMCID: PMC9585310 DOI: 10.3389/fmolb.2022.1000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding how RNAs interact with proteins, RNAs, or other molecules remains a challenge of main interest in biology, given the importance of these complexes in both normal and pathological cellular processes. Since experimental datasets are starting to be available for hundreds of functional interactions between RNAs and other biomolecules, several machine learning and deep learning algorithms have been proposed for predicting RNA-RNA or RNA-protein interactions. However, most of these approaches were evaluated on a single dataset, making performance comparisons difficult. With this review, we aim to summarize recent computational methods, developed in this broad research area, highlighting feature encoding and machine learning strategies adopted. Given the magnitude of the effect that dataset size and quality have on performance, we explored the characteristics of these datasets. Additionally, we discuss multiple approaches to generate datasets of negative examples for training. Finally, we describe the best-performing methods to predict interactions between proteins and specific classes of RNA molecules, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), and methods to predict RNA-RNA or RNA-RBP interactions independently of the RNA type.
Collapse
Affiliation(s)
- G Pepe
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- *Correspondence: G Pepe, ; M Helmer-Citterich,
| | - R Appierdo
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - C Carrino
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - F Ballesio
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - M Helmer-Citterich
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- *Correspondence: G Pepe, ; M Helmer-Citterich,
| | - PF Gherardini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
7
|
Li J, Zhu W, Zhou J, Yun W, Li X, Guan Q, Lv W, Cheng Y, Ni H, Xie Z, Li M, Zhang L, Xu Y, Zhang Q. A Presurgical Unfavorable Prediction Scale of Endovascular Treatment for Acute Ischemic Stroke. Front Aging Neurosci 2022; 14:942285. [PMID: 35847671 PMCID: PMC9284674 DOI: 10.3389/fnagi.2022.942285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo develop a prognostic prediction model of endovascular treatment (EVT) for acute ischemic stroke (AIS) induced by large-vessel occlusion (LVO), this study applied machine learning classification model light gradient boosting machine (LightGBM) to construct a unique prediction model.MethodsA total of 973 patients were enrolled, primary outcome was assessed with modified Rankin scale (mRS) at 90 days, and favorable outcome was defined using mRS 0–2 scores. Besides, LightGBM algorithm and logistic regression (LR) were used to construct a prediction model. Then, a prediction scale was further established and verified by both internal data and other external data.ResultsA total of 20 presurgical variables were analyzed using LR and LightGBM. The results of LightGBM algorithm indicated that the accuracy and precision of the prediction model were 73.77 and 73.16%, respectively. The area under the curve (AUC) was 0.824. Furthermore, the top 5 variables suggesting unfavorable outcomes were namely admitting blood glucose levels, age, onset to EVT time, onset to hospital time, and National Institutes of Health Stroke Scale (NIHSS) scores (importance = 130.9, 102.6, 96.5, 89.5 and 84.4, respectively). According to AUC, we established the key cutoff points and constructed prediction scale based on their respective weightings. Then, the established prediction scale was verified in raw and external data and the sensitivity was 80.4 and 83.5%, respectively. Finally, scores >3 demonstrated better accuracy in predicting unfavorable outcomes.ConclusionPresurgical prediction scale is feasible and accurate in identifying unfavorable outcomes of AIS after EVT.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Wencheng Zhu
- The Institute of Software, Chinese Academy of Sciences, Beijing, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenwei Yun
- Department of Neurology, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaobo Li
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Qiaochu Guan
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Weiping Lv
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yue Cheng
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Huanyu Ni
- Department of Pharmacy of Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Ziyi Xie
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Mengyun Li
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Lu Zhang
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Qingxiu Zhang
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
- *Correspondence: Qingxiu Zhang
| |
Collapse
|
8
|
Xu D, Yuan W, Fan C, Liu B, Lu MZ, Zhang J. Opportunities and Challenges of Predictive Approaches for the Non-coding RNA in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:890663. [PMID: 35498708 PMCID: PMC9048598 DOI: 10.3389/fpls.2022.890663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 06/01/2023]
Affiliation(s)
- Dong Xu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenya Yuan
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Yu B, Wang X, Zhang Y, Gao H, Wang Y, Liu Y, Gao X. RPI-MDLStack: Predicting RNA-protein interactions through deep learning with stacking strategy and LASSO. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Zhang Y, Jiang Z, Chen C, Wei Q, Gu H, Yu B. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier. Interdiscip Sci 2021; 14:311-330. [PMID: 34731411 DOI: 10.1007/s12539-021-00488-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Accurate prediction of drug-target interactions (DTIs), which is often used in the fields of drug discovery and drug repositioning, is regarded a key challenge in the study of drug science. In this paper, a new method called DeepStack-DTIs is proposed to predict DTIs. First, for the target protein, pseudo-position specific score matrix, pseudo amino acid composition and SPIDER3 are used to extract the different feature information of the target protein. Meanwhile, the path-based fingerprint features of each drug are extracted. Then, the synthetic minority oversampling technique (SMOTE) and light gradient boosting machine (LightGBM) are used for data balancing and feature selection, respectively. Finally, the processed features are input to the deep-stacked ensemble classifier composed of gated recurrent unit (GRU), deep neural network (DNN), support vector machine (SVM), eXtreme gradient boosting (XGBoost) and logistic regression (LR) to predict DTIs. Under the five-fold cross-validation and compared with existing methods, the proposed method achieves higher prediction accuracy on the gold standard dataset. To evaluate the predictive power of DeepStack-DTIs, we validate the method on another dataset and predict the drug-target interaction network. The results indicate that DeepStack-DTIs has excellent predictive ability than the other methods, and provides novel insights for the prediction of DTIs. A novel method DeepStack-DTIs for drug-target interactions prediction. PsePSSM, PseAAC, SPIDER3 and FP2 are fused to convert protein sequence and drug molecule information into digital information, respectively. The SMOTE algorithm is used to balance the dataset and LightGBM feature selection algorithm is employed to remove redundant and irrelevant features to select the optimal feature subset. This optimal feature subset is inputted into the deep-stacked ensemble classifier to predict drug-target interactions. The experimental results show DeepStack-DTIs method can significantly improve the prediction accuracy of drug-target interactions.
Collapse
Affiliation(s)
- Yan Zhang
- College of Mechanical and Electrical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China.,College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Zhiwen Jiang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Cheng Chen
- School of Computer Science and Technology, Shandong University, Qingdao, 266237, China
| | - Qinqin Wei
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Haiming Gu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China. .,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China. .,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, 571158, China.
| |
Collapse
|
11
|
Wang M, Yue L, Yang X, Wang X, Han Y, Yu B. Fertility-LightGBM: A fertility-related protein prediction model by multi-information fusion and light gradient boosting machine. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Development of machine learning model for diagnostic disease prediction based on laboratory tests. Sci Rep 2021; 11:7567. [PMID: 33828178 PMCID: PMC8026627 DOI: 10.1038/s41598-021-87171-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/19/2021] [Indexed: 01/16/2023] Open
Abstract
The use of deep learning and machine learning (ML) in medical science is increasing, particularly in the visual, audio, and language data fields. We aimed to build a new optimized ensemble model by blending a DNN (deep neural network) model with two ML models for disease prediction using laboratory test results. 86 attributes (laboratory tests) were selected from datasets based on value counts, clinical importance-related features, and missing values. We collected sample datasets on 5145 cases, including 326,686 laboratory test results. We investigated a total of 39 specific diseases based on the International Classification of Diseases, 10th revision (ICD-10) codes. These datasets were used to construct light gradient boosting machine (LightGBM) and extreme gradient boosting (XGBoost) ML models and a DNN model using TensorFlow. The optimized ensemble model achieved an F1-score of 81% and prediction accuracy of 92% for the five most common diseases. The deep learning and ML models showed differences in predictive power and disease classification patterns. We used a confusion matrix and analyzed feature importance using the SHAP value method. Our new ML model achieved high efficiency of disease prediction through classification of diseases. This study will be useful in the prediction and diagnosis of diseases.
Collapse
|
13
|
Wang J, Zhao Y, Gong W, Liu Y, Wang M, Huang X, Tan J. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction. BMC Bioinformatics 2021; 22:133. [PMID: 33740884 PMCID: PMC7980572 DOI: 10.1186/s12859-021-04069-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Non-coding RNA (ncRNA) and protein interactions play essential roles in various physiological and pathological processes. The experimental methods used for predicting ncRNA–protein interactions are time-consuming and labor-intensive. Therefore, there is an increasing demand for computational methods to accurately and efficiently predict ncRNA–protein interactions. Results In this work, we presented an ensemble deep learning-based method, EDLMFC, to predict ncRNA–protein interactions using the combination of multi-scale features, including primary sequence features, secondary structure sequence features, and tertiary structure features. Conjoint k-mer was used to extract protein/ncRNA sequence features, integrating tertiary structure features, then fed into an ensemble deep learning model, which combined convolutional neural network (CNN) to learn dominating biological information with bi-directional long short-term memory network (BLSTM) to capture long-range dependencies among the features identified by the CNN. Compared with other state-of-the-art methods under five-fold cross-validation, EDLMFC shows the best performance with accuracy of 93.8%, 89.7%, and 86.1% on RPI1807, NPInter v2.0, and RPI488 datasets, respectively. The results of the independent test demonstrated that EDLMFC can effectively predict potential ncRNA–protein interactions from different organisms. Furtherly, EDLMFC is also shown to predict hub ncRNAs and proteins presented in ncRNA–protein networks of Mus musculus successfully. Conclusions In general, our proposed method EDLMFC improved the accuracy of ncRNA–protein interaction predictions and anticipated providing some helpful guidance on ncRNA functions research. The source code of EDLMFC and the datasets used in this work are available at https://github.com/JingjingWang-87/EDLMFC. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04069-9.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, 100124, China
| | - Yanpeng Zhao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, 100124, China
| | - Weikang Gong
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, 100124, China
| | - Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, 100124, China
| | - Mei Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoqian Huang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, 100124, China
| | - Jianjun Tan
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
14
|
Zhang SW, Zhang XX, Fan XN, Li WN. LPI-CNNCP: Prediction of lncRNA-protein interactions by using convolutional neural network with the copy-padding trick. Anal Biochem 2020; 601:113767. [PMID: 32454029 DOI: 10.1016/j.ab.2020.113767] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in many pathological and biological processes, such as post-transcription, cell differentiation and gene regulation. Increasingly more studies have shown that lncRNAs function through mainly interactions with specific RNA binding proteins (RBPs). However, experimental identification of potential lncRNA-protein interactions is costly and time-consuming. In this work, we propose a novel convolutional neural network-based method with the copy-padding trick (named LPI-CNNCP) to predict lncRNA-protein interactions. The copy-padding trick of the LPI-CNNCP convert the protein/RNA sequences with variable-length into the fixed-length sequences, thus enabling the construction of the CNN model. A high-order one-hot encoding is also applied to transform the protein/RNA sequences into image-like inputs for capturing the dependencies among amino acids (or nucleotides). In the end, these encoded protein/RNA sequences are feed into a CNN to predict the lncRNA-protein interactions. Compared with other state-of-the-art methods in 10-fold cross-validation (10CV) test, LPI-CNNCP shows the best performance. Results in the independent test demonstrate that our LPI-CNNCP can effectively predict the potential lncRNA-protein interactions. We also compared the copy-padding trick with two other existing tricks (i.e., zero-padding and cropping), and the results show that our copy-padding rick outperforms the zero-padding and cropping tricks on predicting lncRNA-protein interactions. The source code of LPI-CNNCP and the datasets used in this work are available at https://github.com/NWPU-903PR/LPI-CNNCP for academic users.
Collapse
Affiliation(s)
- Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Xi-Xi Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiao-Nan Fan
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei-Na Li
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
15
|
Wekesa JS, Meng J, Luan Y. Multi-feature fusion for deep learning to predict plant lncRNA-protein interaction. Genomics 2020; 112:2928-2936. [PMID: 32437848 DOI: 10.1016/j.ygeno.2020.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) play key roles in regulating cellular biological processes through diverse molecular mechanisms including binding to RNA binding proteins. The majority of plant lncRNAs are functionally uncharacterized, thus, accurate prediction of plant lncRNA-protein interaction is imperative for subsequent functional studies. We present an integrative model, namely DRPLPI. Its uniqueness is that it predicts by multi-feature fusion. Structural and four groups of sequence features are used, including tri-nucleotide composition, gapped k-mer, recursive complement and binary profile. We design a multi-head self-attention long short-term memory encoder-decoder network to extract generative high-level features. To obtain robust results, DRPLPI combines categorical boosting and extra trees into a single meta-learner. Experiments on Zea mays and Arabidopsis thaliana obtained 0.9820 and 0.9652 area under precision/recall curve (AUPRC) respectively. The proposed method shows significant enhancement in the prediction performance compared with existing state-of-the-art methods.
Collapse
Affiliation(s)
- Jael Sanyanda Wekesa
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116023, China; School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi 62000-00200, Kenya
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116023, China.
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
16
|
Schwarzenbach H, Gahan PB. Circulating non-coding RNAs in recurrent and metastatic ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:399-418. [PMID: 35582568 PMCID: PMC8992516 DOI: 10.20517/cdr.2019.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022]
Abstract
Ovarian cancer has a poor outcome because it is usually detected at advanced tumor stages, and the majority of the patients develop disease relapse as a result of chemotherapy resistance. This most lethal gynecological malignancy metastasizes within the peritoneal fluid or ascites to pelvic and distal organs. In ovarian cancer progression and metastasis, small non-coding RNAs (ncRNAs), including long noncoding RNAs and microRNAs have been recognized as important regulators. Their dysregulation modulates gene expression and cellular signal pathways and can be detected in liquid biopsies. In this review, we provide an overview on circulating plasma and serum ncRNAs participating in tumor cell migration and invasion, and contributing to recurrence and metastasis of ovarian cancer. We will also discuss the development of potential, novel therapies using ncRNAs as target molecules or tumor markers for ovarian cancer.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, Perugia 06123, Italy
| |
Collapse
|
17
|
Zheng K, You ZH, Wang L, Zhou Y, Li LP, Li ZW. MLMDA: a machine learning approach to predict and validate MicroRNA-disease associations by integrating of heterogenous information sources. J Transl Med 2019; 17:260. [PMID: 31395072 PMCID: PMC6688360 DOI: 10.1186/s12967-019-2009-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 02/01/2023] Open
Abstract
Background Emerging evidences show that microRNA (miRNA) plays an important role in many human complex diseases. However, considering the inherent time-consuming and expensive of traditional in vitro experiments, more and more attention has been paid to the development of efficient and feasible computational methods to predict the potential associations between miRNA and disease. Methods In this work, we present a machine learning-based model called MLMDA for predicting the association of miRNAs and diseases. More specifically, we first use the k-mer sparse matrix to extract miRNA sequence information, and combine it with miRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity information. Then, more representative features are extracted from them through deep auto-encoder neural network (AE). Finally, the random forest classifier is used to effectively predict potential miRNA–disease associations. Results The experimental results show that the MLMDA model achieves promising performance under fivefold cross validations with AUC values of 0.9172, which is higher than the methods using different classifiers or different feature combination methods mentioned in this paper. In addition, to further evaluate the prediction performance of MLMDA model, case studies are carried out with three Human complex diseases including Lymphoma, Lung Neoplasm, and Esophageal Neoplasms. As a result, 39, 37 and 36 out of the top 40 predicted miRNAs are confirmed by other miRNA–disease association databases. Conclusions These prominent experimental results suggest that the MLMDA model could serve as a useful tool guiding the future experimental validation for those promising miRNA biomarker candidates. The source code and datasets explored in this work are available at http://220.171.34.3:81/.
Collapse
Affiliation(s)
- Kai Zheng
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Zhu-Hong You
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, 830011, China.
| | - Lei Wang
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, 830011, China. .,College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, China.
| | - Yong Zhou
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li-Ping Li
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, 830011, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
18
|
Wekesa JS, Luan Y, Chen M, Meng J. A Hybrid Prediction Method for Plant lncRNA-Protein Interaction. Cells 2019; 8:E521. [PMID: 31151273 PMCID: PMC6627874 DOI: 10.3390/cells8060521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 01/23/2023] Open
Abstract
Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM's superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction.
Collapse
Affiliation(s)
- Jael Sanyanda Wekesa
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning, China.
- Department of Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi 62000-00200, Kenya.
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China.
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning, China.
| |
Collapse
|
19
|
Pan X, Yang Y, Xia C, Mirza AH, Shen H. Recent methodology progress of deep learning for RNA–protein interaction prediction. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1544. [DOI: 10.1002/wrna.1544] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China
- IDLab, Department for Electronics and Information Systems Ghent University Ghent Belgium
- BASF Agriculture Solution Ghent Belgium
| | - Yang Yang
- Department of Computer Science Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China
| | - Chun‐Qiu Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China
| | - Aashiq H. Mirza
- Department of Pharmacology Weill Cornell Medicine New York New York
| | - Hong‐Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China
- Department of Computer Science Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China
| |
Collapse
|
20
|
Xie G, Wu C, Sun Y, Fan Z, Liu J. LPI-IBNRA: Long Non-coding RNA-Protein Interaction Prediction Based on Improved Bipartite Network Recommender Algorithm. Front Genet 2019; 10:343. [PMID: 31057602 PMCID: PMC6482170 DOI: 10.3389/fgene.2019.00343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/29/2019] [Indexed: 12/26/2022] Open
Abstract
According to the latest research, lncRNAs (long non-coding RNAs) play a broad and important role in various biological processes by interacting with proteins. However, identifying whether proteins interact with a specific lncRNA through biological experimental methods is difficult, costly, and time-consuming. Thus, many bioinformatics computational methods have been proposed to predict lncRNA-protein interactions. In this paper, we proposed a novel approach called Long non-coding RNA-Protein Interaction Prediction based on Improved Bipartite Network Recommender Algorithm (LPI-IBNRA). In the proposed method, we implemented a two-round resource allocation and eliminated the second-order correlations appropriately on the bipartite network. Experimental results illustrate that LPI-IBNRA outperforms five previous methods, with the AUC values of 0.8932 in leave-one-out cross validation (LOOCV) and 0.8819 ± 0.0052 in 10-fold cross validation, respectively. In addition, case studies on four lncRNAs were carried out to show the predictive power of LPI-IBNRA.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computers, Guangdong University of Technology, Guangzhou, China
| | - Cuiming Wu
- School of Computers, Guangdong University of Technology, Guangzhou, China
| | - Yuping Sun
- School of Computers, Guangdong University of Technology, Guangzhou, China
| | - Zhiliang Fan
- School of Computers, Guangdong University of Technology, Guangzhou, China
| | - Jianghui Liu
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|