1
|
Lenitz I, Börlin C, Torello Pianale L, Balachandran D, Nielsen J, David F, Siewers V, Nygård Y. ChIP-exo and CRISPRi/a illuminate the role of Pdr1 and Yap1 in acetic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 2025; 91:e0182424. [PMID: 40035556 PMCID: PMC12016514 DOI: 10.1128/aem.01824-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Budding yeast Saccharomyces cerevisiae has great potential as a host organism for various biorefinery applications. Nevertheless, the utilization of renewable plant biomass as feedstock for yeast in industrial applications remains a bottleneck, largely due to the presence of inhibitory substances such as acetic acid that are released in the biomass pretreatment processes. Exposure to acetic acid leads to different cellular stress mechanisms, several of which are directed by transcription factors. In this work, the role of the transcription factors Pdr1 and Yap1 in acetic acid tolerance was investigated using ChIP-exo and CRISPR interference/activation (CRISPRi/a). Pdr1 is the main regulator of the pleiotropic drug response, whereas Yap1 governs the oxidative stress response. CRISPRa targeting YAP1 for overexpression conferred a higher specific growth rate of S. cerevisiae, whereas CRISPRi-based downregulation of PDR1 proved to be beneficial for growth in medium containing acetic acid. ChIP-exo experiments showed increased binding of Pdr1 or Yap1 to their target promoters in the presence of acetic acid, and a large number of promoters were bound by either transcription factor. Promoters of genes involved in amino acid synthesis or encoding ABC transporters had the highest level of binding enrichment in the presence of acetic acid. The results highlight the potential for developing more acetic acid-tolerant yeast by altering the expression of transcription factor-encoding genes and demonstrate how expression can be fine-tuned by CRISPRi/a.IMPORTANCEBiotechnological conversion of plant biomass into a variety of commodity chemicals and specialty molecules is an important step towards a bioeconomy. This study highlights the importance of two transcription factors, Pdr1 and Yap1, in the tolerance of Saccharomyces cerevisiae to acetic acid, a common inhibitor in bioprocesses using lignocellulosic biomass. CRISPR interference/activation and ChIP-exo were used to manipulate the expression and binding of these transcription factors in response to acetic acid stress. The study provides new insights into adaptation to acetic acid and suggests ways to improve yeast performance in industrial applications.
Collapse
Affiliation(s)
- Ibai Lenitz
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Christoph Börlin
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Luca Torello Pianale
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Darshan Balachandran
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Florian David
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
2
|
Cárdenas Parra LY, Rojas Rodríguez AE, Pérez Cárdenas JE, Pérez-Agudelo JM. Molecular Evaluation of the mRNA Expression of the ERG11, ERG3, CgCDR1, and CgSNQ2 Genes Linked to Fluconazole Resistance in Candida glabrata in a Colombian Population. J Fungi (Basel) 2024; 10:509. [PMID: 39057394 PMCID: PMC11277825 DOI: 10.3390/jof10070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION The study of Candida glabrata genes associated with fluconazole resistance, from a molecular perspective, increases the understanding of the phenomenon with a view to its clinical applicability. OBJECTIVE We sought to establish the predictive molecular profile of fluconazole resistance in Candida glabrata by analyzing the ERG11, ERG3, CgCDR1, and CgSNQ2 genes. METHOD Expression was quantified using RT-qPCR. Metrics were obtained through molecular docking and Fisher discriminant functions. Additionally, a predictive classification was made against the susceptibility of C. glabrata to fluconazole. RESULTS The relative expression of the ERG3, CgCDR1, and CgSNQ2 genes was higher in the fluconazole-resistant strains than in the fluconazole-susceptible, dose-dependent strains. The gene with the highest relative expression in the fluconazole-exposed strains was CgCDR1, and in both the resistant and susceptible, dose-dependent strains exposed to fluconazole, this was also the case. The molecular docking model generated a median number of contacts between fluconazole and ERG11 that was lower than the median number of contacts between fluconazole and ERG3, -CgCDR1, and -CgSNQ2. The predicted classification through the multivariate model for fluconazole susceptibility achieved an accuracy of 73.5%. CONCLUSION The resistant strains had significant expression levels of genes encoding efflux pumps and the ERG3 gene. Molecular analysis makes the identification of a low affinity between fluconazole and its pharmacological target possible, which may explain the lower intrinsic susceptibility of the fungus to fluconazole.
Collapse
Affiliation(s)
- Leidy Yurany Cárdenas Parra
- Facultad de Ciencias para la Salud, Universidad de Caldas, Manizales 170004, Colombia; (L.Y.C.P.); (J.E.P.C.); (J.M.P.-A.)
- Facultad de Ciencias de la Salud, Universidad Católica de Manizales, Manizales 170001, Colombia
| | | | - Jorge Enrique Pérez Cárdenas
- Facultad de Ciencias para la Salud, Universidad de Caldas, Manizales 170004, Colombia; (L.Y.C.P.); (J.E.P.C.); (J.M.P.-A.)
| | - Juan Manuel Pérez-Agudelo
- Facultad de Ciencias para la Salud, Universidad de Caldas, Manizales 170004, Colombia; (L.Y.C.P.); (J.E.P.C.); (J.M.P.-A.)
| |
Collapse
|
3
|
Chen MK, Zhang TL, Sun MZ, Yu HW, Ye LD. Transcription Factor Pdr3p Promotes Carotenoid Biosynthesis by Activating GAL Promoters in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:590-597. [PMID: 38324606 DOI: 10.1021/acssynbio.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pleiotropic drug resistance (PDR) family proteins have been extensively studied for their roles in transporting hydrophobic substances, including carotenoids. Overexpression of the PDR family regulator Pdr3p was recently found to boost the biosynthesis of carotenoids, which could not be explained by enhanced product secretion due to the meager extracellular proportions. To provide insights into the possible mechanism, comparative transcriptomics, reverse metabolic engineering, and electrophoretic mobility shift assay (EMSA) were conducted. Transcriptomic data suggested an unexpected correlation between Pdr3p overexpression and the transcriptional levels of GAL promoter-driven genes. This assumption was verified using mCherry and the lycopene synthetic pathway as the reporters. qRT-PCR and EMSA provided further evidence for the activation of GAL promoters by Pdr3p binding to their upstream activation sequences (UASs). This work gives insight into the mechanism of Pdr3p-promoted carotenoid production and highlights the complicated metabolic networking between transcriptional factors and promoters in yeast.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ming-Ze Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hong-Wei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Li-Dan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
UME6 Is Involved in the Suppression of Basal Transcription of ABC Transporters and Drug Resistance in the ρ+ Cells of Saccharomyces cerevisiae. Microorganisms 2022; 10:microorganisms10030601. [PMID: 35336175 PMCID: PMC8953597 DOI: 10.3390/microorganisms10030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
In Saccharomycescerevisiae, the Rpd3L complex contains a histone deacetylase, Rpd3, and the DNA binding proteins, Ume6 and Ash1, and acts as a transcriptional repressor or activator. We previously showed that RPD3 and UME6 are required for the activation of PDR5, which encodes a major efflux pump, and pleiotropic drug resistance (PDR) in ρ0/− cells, which lack mitochondrial DNA. However, there are inconsistent reports regarding whether RPD3 and UME6 are required for Pdr5-mediated PDR in ρ+ cells with mitochondrial DNA. Since PDR5 expression or PDR in the ρ+ cells of the rpd3Δ and ume6Δ mutants have primarily been examined using fermentable media, mixed cultures of ρ+ and ρ0/− cells could be used. Therefore, we examined whether RPD3 and UME6 are required for basal and drug-induced PDR5 transcription and PDR in ρ+ cells using fermentable and nonfermentable media. UME6 suppresses the basal transcription levels of the ABC transporters, including PDR5, and drug resistance in ρ+ cells independent of the carbon source used in the growth medium. In contrast, RPD3 is required for drug resistance but did not interfere with the basal PDR5 mRNA levels. UME6 is also required for the cycloheximide-induced transcription of PDR5 in nonfermentable media but not in fermentable media.
Collapse
|
5
|
Crosstalk between Yeast Cell Plasma Membrane Ergosterol Content and Cell Wall Stiffness under Acetic Acid Stress Involving Pdr18. J Fungi (Basel) 2022; 8:jof8020103. [PMID: 35205858 PMCID: PMC8880318 DOI: 10.3390/jof8020103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
Acetic acid is a major inhibitory compound in several industrial bioprocesses, in particular in lignocellulosic yeast biorefineries. Cell envelope remodeling, involving cell wall and plasma membrane composition, structure and function, is among the mechanisms behind yeast adaptation and tolerance to stress. Pdr18 is a plasma membrane ABC transporter of the pleiotropic drug resistance family and a reported determinant of acetic acid tolerance mediating ergosterol transport. This study provides evidence for the impact of Pdr18 expression in yeast cell wall during adaptation to acetic acid stress. The time-course of acetic-acid-induced transcriptional activation of cell wall biosynthetic genes (FKS1, BGL2, CHS3, GAS1) and of increased cell wall stiffness and cell wall polysaccharide content in cells with the PDR18 deleted, compared to parental cells, is reported. Despite the robust and more intense adaptive response of the pdr18Δ population, the stress-induced increase of cell wall resistance to lyticase activity was below parental strain levels, and the duration of the period required for intracellular pH recovery from acidification and growth resumption was higher in the less tolerant pdr18Δ population. The ergosterol content, critical for plasma membrane stabilization, suffered a drastic reduction in the first hour of cultivation under acetic acid stress, especially in pdr18Δ cells. Results revealed a crosstalk between plasma membrane ergosterol content and cell wall biophysical properties, suggesting a coordinated response to counteract the deleterious effects of acetic acid.
Collapse
|
6
|
Sá-Correia I, Godinho CP. Exploring the biological function of efflux pumps for the development of superior industrial yeasts. Curr Opin Biotechnol 2021; 74:32-41. [PMID: 34781103 DOI: 10.1016/j.copbio.2021.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Among the mechanisms used by yeasts to overcome the deleterious effects of chemical and other environmental stresses is the activity of plasma membrane efflux pumps involved in multidrug resistance (MDR), a role on the focus of intensive research for years in pathogenic yeasts. More recently, these active transporters belonging to the MFS (Drug: H+ antiporters) or the ABC superfamily have been involved in resistance to xenobiotic compounds and in the transport of substrates with a clear physiological role. This review paper focuses on these putative efflux pumps concerning their tolerance phenotypes towards bioprocess-specific multiple stress factors, expression levels, physiological roles, and mechanisms by which they may lead to multistress resistance. Their association with the increased secretion of metabolites and other bioproducts and in the development of more robust superior strains for Yeast Chemical Biotechnology is highlighted.
Collapse
Affiliation(s)
- Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory Institute for Health and Bioeconomy i4HB at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Cláudia P Godinho
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory Institute for Health and Bioeconomy i4HB at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
7
|
Knorre DA, Galkina KV, Shirokovskikh T, Banerjee A, Prasad R. Do Multiple Drug Resistance Transporters Interfere with Cell Functioning under Normal Conditions? BIOCHEMISTRY (MOSCOW) 2021; 85:1560-1569. [PMID: 33705294 DOI: 10.1134/s0006297920120081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eukaryotic cells rely on multiple mechanisms to protect themselves from exogenous toxic compounds. For instance, cells can limit penetration of toxic molecules through the plasma membrane or sequester them within the specialized compartments. Plasma membrane transporters with broad substrate specificity confer multiple drug resistance (MDR) to cells. These transporters efflux toxic compounds at the cost of ATP hydrolysis (ABC-transporters) or proton influx (MFS-transporters). In our review, we discuss the possible costs of having an active drug-efflux system using yeast cells as an example. The pleiotropic drug resistance (PDR) subfamily ABC-transporters are known to constitutively hydrolyze ATP even without any substrate stimulation or transport across the membrane. Besides, some MDR-transporters have flippase activity allowing transport of lipids from inner to outer lipid layer of the plasma membrane. Thus, excessive activity of MDR-transporters can adversely affect plasma membrane properties. Moreover, broad substrate specificity of ABC-transporters also suggests the possibility of unintentional efflux of some natural metabolic intermediates from the cells. Furthermore, in some microorganisms, transport of quorum-sensing factors is mediated by MDR transporters; thus, overexpression of the transporters can also disturb cell-to-cell communications. As a result, under normal conditions, cells keep MDR-transporter genes repressed and activate them only upon exposure to stresses. We speculate that exploiting limitations of the drug-efflux system is a promising strategy to counteract MDR in pathogenic fungi.
Collapse
Affiliation(s)
- D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - K V Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T Shirokovskikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India
| | - R Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India
| |
Collapse
|
8
|
Tesnière C, Pradal M, Legras JL. Sterol uptake analysis in Saccharomyces and non-Saccharomyces wine yeast species. FEMS Yeast Res 2021; 21:6225805. [PMID: 33852000 DOI: 10.1093/femsyr/foab020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Sterols are essential components of the yeast membrane and their synthesis requires oxygen. Yet, Saccharomyces cerevisiae has developed the ability to take up sterols from the medium under anaerobiosis. Here we investigated sterol uptake efficiency and the expression of genes related to sterol import in Saccharomyces and non-Saccharomyces wine yeast species fermenting under anaerobic conditions. The sterol uptake efficiency of 39 strains was evaluated by flow cytometry (with 25-NBD Cholesterol, a fluorescent cholesterol probe introduced in the medium) and we found an important discrepancy between Saccharomyces and non-Saccharomyces wine yeast species that we correlated to a lower final cell population and a lower fermentation rate. A high uptake of sterol was observed in the various Saccharomyces strains. Spot tests performed on 13 of these strains confirmed the differences between Saccharomyces and non-Saccharomyces strains, suggesting that the presence of the sterol uptake transporters AUS1 and PDR11 could cause these discrepancies. Indeed, we could not find any homologue to these genes in the genome of Hanseniaspora uvarum, H. guillermondii, Lachancea thermotolerans, Torulaspora delbreueckii, Metschnikowia pulcherrima, or Starmarella bacillaris species. The specialization of sterol import function for post genome-duplication species may have favored growth under anaerobiosis.
Collapse
Affiliation(s)
- Catherine Tesnière
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France.,CIRM-Levures, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
9
|
Godinho CP, Costa R, Sá‐Correia I. The ABC transporter Pdr18 is required for yeast thermotolerance due to its role in ergosterol transport and plasma membrane properties. Environ Microbiol 2021; 23:69-80. [PMID: 32985771 PMCID: PMC7891575 DOI: 10.1111/1462-2920.15253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Among the mechanisms by which yeast overcomes multiple stresses is the expression of genes encoding ATP-binding cassette (ABC) transporters required for resistance to a wide range of toxic compounds. These substrates may include weak acids, alcohols, agricultural pesticides, polyamines, metal cations, as in the case of Pdr18. This pleotropic drug resistance transporter was previously proposed to transport ergosterol at the plasma membrane (PM) level contributing to the maintenance of PM lipid organization and reduced diffusional permeation induced by lipophilic compounds. The present work reports a novel phenotype associated with the putative drug/xenobiotic-efflux-pump transporter Pdr18: the resistance to heat shock and to long-term growth at supra-optimal temperatures. Cultivation at 40°C was demonstrated to lead to higher PM permeabilization of a pdr18Δ cell population with the PDR18 gene deleted compared with the parental strain population, as indicated by flow cytometry analysis of propidium iodide stained cells. Cells of pdr18Δ grown at 40°C also exhibited increased transcription levels from genes of the ergosterol biosynthetic pathway, compared with parental cells. However, this adaptive response at 40°C was not enough to maintain PM physiological ergosterol levels in the population lacking the Pdr18 transporter and free ergosterol precursors accumulate in the deletion mutant cells.
Collapse
Affiliation(s)
- Cláudia P. Godinho
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Rute Costa
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Department of BioengineeringInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Isabel Sá‐Correia
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Department of BioengineeringInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
| |
Collapse
|
10
|
Phylogeny, evolution, and potential ecological relationship of cytochrome CYP52 enzymes in Saccharomycetales yeasts. Sci Rep 2020; 10:10269. [PMID: 32581293 PMCID: PMC7314818 DOI: 10.1038/s41598-020-67200-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/07/2020] [Indexed: 01/16/2023] Open
Abstract
Cytochrome P450s from the CYP52 family participate in the assimilation of alkanes and fatty acids in fungi. In this work, the evolutionary history of a set of orthologous and paralogous CYP52 proteins from Saccharomycetales yeasts was inferred. Further, the phenotypic assimilation profiles were related with the distribution of cytochrome CYP52 members among species. The maximum likelihood phylogeny of CYP52 inferred proteins reveled a frequent ancient and modern duplication and loss events that generated orthologous and paralogous groups. Phylogeny and assimilation profiles of alkanes and fatty acids showed a family expansion in yeast isolated from hydrophobic-rich environments. Docking analysis of deduced ancient CYP52 proteins suggests that the most ancient function was the oxidation of C4-C11 alkanes, while the oxidation of >10 carbon alkanes and fatty acids is a derived character. The ancient CYP52 paralogs displayed partial specialization and promiscuous interaction with hydrophobic substrates. Additionally, functional optimization was not evident. Changes in the interaction of ancient CYP52 with different alkanes and fatty acids could be associated with modifications in spatial orientations of the amino acid residues that comprise the active site. The extended family of CYP52 proteins is likely evolving toward functional specialization, and certain redundancy for substrates is being maintained.
Collapse
|
11
|
Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R. ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Front Microbiol 2019; 10:1445. [PMID: 31379756 PMCID: PMC6647914 DOI: 10.3389/fmicb.2019.01445] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
ATP-binding cassette (ABC) superfamily members have a key role as nutrient importers and exporters in bacteria. However, their role as drug exporters in eukaryotes brought this superfamily member to even greater prominence. The capacity of ABC transporters to efflux a broad spectrum of xenobiotics represents one of the major mechanisms of clinical multidrug resistance in pathogenic fungi including Candida species. Candida auris, a newly emerged multidrug-resistant fungal pathogen of humans, has been responsible for multiple outbreaks of drug-resistant infections in hospitals around the globe. Our study has analyzed the entire complement of ABC superfamily transporters to assess whether these play a major role in drug resistance mechanisms of C. auris. Our bioinformatics analyses identified 28 putative ABC proteins encoded in the genome of the C. auris type-strain CBS 10913T; 20 of which contain transmembrane domains (TMDs). Quantitative real-time PCR confirmed the expression of all 20 TMD transporters, underlining their potential in contributing to the C. auris drug-resistant phenotype. Changes in transcript levels after short-term exposure of drugs and in drug-resistant C. auris isolates suggested their importance in the drug resistance phenotype of this pathogen. CAUR_02725 orthologous to CDR1, a major multidrug exporter in other yeasts, showed consistently higher expression in multidrug-resistant strains of C. auris. Homologs of other ABC transporter genes, such as CDR4, CDR6, and SNQ2, also displayed raised expression in a sub-set of clinical isolates. Together, our analysis supports the involvement of these transporters in multidrug resistance in C. auris.
Collapse
Affiliation(s)
- Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Remya Nair
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Gustavo Bravo Ruiz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Zoe K. Ross
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexander Lorenz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Andrew M. Lynn
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Alok K. Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| |
Collapse
|
12
|
Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:1-35. [PMID: 30911887 DOI: 10.1007/978-3-030-13035-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.
Collapse
|