1
|
Osborne R, Labandera AM, Ryder AJ, Kanali A, Xu T, Akintewe O, Schwarze MA, Morgan CD, Hartman S, Kaiserli E, Gibbs DJ. VRN2-PRC2 facilitates light-triggered repression of PIF signaling to coordinate growth in Arabidopsis. Dev Cell 2025:S1534-5807(25)00122-4. [PMID: 40147448 DOI: 10.1016/j.devcel.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/29/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
VERNALIZATION2 (VRN2) is a flowering plant-specific subunit of the polycomb-repressive complex 2 (PRC2), a conserved eukaryotic holoenzyme that represses gene expression by depositing the histone H3 lysine 27 trimethylation (H3K27me3) mark in chromatin. Previous work established VRN2 as an oxygen-regulated target of the N-degron pathway that may function as a sensor subunit connecting PRC2 activity to the perception of endogenous and environmental cues. Here, we show that VRN2 is enriched in the hypoxic shoot apex and emerging leaves of Arabidopsis, where it negatively regulates growth by establishing a stable and conditionally repressed chromatin state in key PHYTOCHROME INTERACTING FACTOR (PIF)-regulated genes that promote cell expansion. This function is required to keep these genes poised for repression via a light-responsive signaling cascade later in leaf development. Thus, we identify VRN2-PRC2 as a core component of a developmentally and spatially encoded epigenetic mechanism that coordinates plant growth through facilitating the signal-dependent suppression of PIF signaling.
Collapse
Affiliation(s)
- Rory Osborne
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | | | - Alex J Ryder
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | - Anastasia Kanali
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | - Tianyuan Xu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | - Sjon Hartman
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK.
| |
Collapse
|
2
|
Rudy E, Tanwar UK, Szlachtowska Z, Grabsztunowicz M, Arasimowicz-Jelonek M, Sobieszczuk-Nowicka E. Unveiling the role of epigenetics in leaf senescence: a comparative study to identify different epigenetic regulations of senescence types in barley leaves. BMC PLANT BIOLOGY 2024; 24:863. [PMID: 39272009 PMCID: PMC11401419 DOI: 10.1186/s12870-024-05573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Developmental leaf senescence (DLS) is an irreversible process followed by cell death. Dark-induced leaf senescence (DILS) is a reversible process that allows adaptations to changing environmental conditions. As a result of exposure to adverse environmental changes, plants have developed mechanisms that enable them to survive. One of these is the redirection of metabolism into the senescence pathway. The plant seeks to optimise resource allocation. Our research aims to demonstrate how epigenetic machinery regulates leaf senescence, including its irreversibility. RESULTS In silico analyses allowed the complex identification and characterisation of 117 genes involved in epigenetic processes in barley. These genes include those responsible for DNA methylation, post-translational histone modifications, and ATP-dependent chromatin remodelling complexes. We then performed RNAseq analysis after DILS and DLS to evaluate their expression in senescence-dependent leaf metabolism. Principal component analysis revealed that evaluated gene expression in developmental senescence was similar to controls, while induced senescence displayed a distinct profile. Western blot experiments revealed that senescence engages senescence-specific histone modification. During DILS and DLS, the methylation of histone proteins H3K4me3 and H3K9me2 increased. H3K9ac acetylation levels significantly decreased during DILS and remained unchanged during DLS. CONCLUSIONS The study identified different epigenetic regulations of senescence types in barley leaves. These findings are valuable for exploring epigenetic regulation of senescence-related molecular mechanisms, particularly in response to premature, induced leaf senescence. Based on the results, we suggest the presence of an epigenetically regulated molecular switch between cell survival and cell death in DILS, highlighting an epigenetically driven cell survival metabolic response.
Collapse
Affiliation(s)
- Elżbieta Rudy
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Zofia Szlachtowska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Magda Grabsztunowicz
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland.
| |
Collapse
|
3
|
Wang H, Yin C, Zhang G, Yang M, Zhu B, Jiang J, Zeng Z. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modification and nucleosome depletion in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:549-564. [PMID: 38184780 DOI: 10.1111/tpj.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Epigenetic regulation of gene expression plays a crucial role in plant development and environmental adaptation. The H3K4me3 and H3K27me3 have not only been discovered in the regulation of gene expression in multiple biological processes but also in responses to abiotic stresses in plants. However, evidence for the presence of both H3K4me3 and H3K27me3 on the same nucleosome is sporadic. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modifications and nucleosome depletion over a considerable number of active genes is documented in potato tubers and provides clues on an additional role of the bivalent modifications. Limited by the available information of genes encoding PcG/TrxG proteins as well as their corresponding mutants in potatoes, the molecular mechanism underlying the cold-induced deposition of the bivalent mark remains elusive. In this study, we found a similar deposition of the bivalent H3K4me3-H3K27me3 mark over 2129 active genes in cold-treated Arabidopsis Col-0 seedlings. The expression levels of the bivalent mark-associated genes tend to be independent of bivalent modification levels. However, these genes were associated with greater chromatin accessibility, presumably to provide a distinct chromatin environment for gene expression. In mutants clf28 and lhp1, failure to deposit H3K27me3 in active genes upon cold treatment implies that the CLF is potentially involved in cold-induced deposition of H3K27me3, with assistance from LHP1. Failure to deposit H3K4me3 during cold treatment in atx1-2 suggests a regulatory role of ATX1 in the deposition of H3K4me3. In addition, we observed a cold-induced global reduction in nucleosome occupancy, which is potentially mediated by LHP1 in an H3K27me3-dependent manner.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Chang Yin
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Guoyan Zhang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Miao Yang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| |
Collapse
|
4
|
Ayyappan V, Sripathi VR, Xie S, Saha MC, Hayford R, Serba DD, Subramani M, Thimmapuram J, Todd A, Kalavacharla VK. Genome-wide profiling of histone (H3) lysine 4 (K4) tri-methylation (me3) under drought, heat, and combined stresses in switchgrass. BMC Genomics 2024; 25:223. [PMID: 38424499 PMCID: PMC10903042 DOI: 10.1186/s12864-024-10068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth. However, the underlying molecular mechanisms associated with heat and drought stress tolerance still need to be fully understood in switchgrass. The methylation of H3K4 is often associated with transcriptional activation of genes, including stress-responsive. Therefore, this study aimed to analyze genome-wide histone H3K4-tri-methylation in switchgrass under heat, drought, and combined stress. RESULTS In total, ~ 1.3 million H3K4me3 peaks were identified in this study using SICER. Among them, 7,342; 6,510; and 8,536 peaks responded under drought (DT), drought and heat (DTHT), and heat (HT) stresses, respectively. Most DT and DTHT peaks spanned 0 to + 2000 bases from the transcription start site [TSS]. By comparing differentially marked peaks with RNA-Seq data, we identified peaks associated with genes: 155 DT-responsive peaks with 118 DT-responsive genes, 121 DTHT-responsive peaks with 110 DTHT-responsive genes, and 175 HT-responsive peaks with 136 HT-responsive genes. We have identified various transcription factors involved in DT, DTHT, and HT stresses. Gene Ontology analysis using the AgriGO revealed that most genes belonged to biological processes. Most annotated peaks belonged to metabolite interconversion, RNA metabolism, transporter, protein modifying, defense/immunity, membrane traffic protein, transmembrane signal receptor, and transcriptional regulator protein families. Further, we identified significant peaks associated with TFs, hormones, signaling, fatty acid and carbohydrate metabolism, and secondary metabolites. qRT-PCR analysis revealed the relative expressions of six abiotic stress-responsive genes (transketolase, chromatin remodeling factor-CDH3, fatty-acid desaturase A, transmembrane protein 14C, beta-amylase 1, and integrase-type DNA binding protein genes) that were significantly (P < 0.05) marked during drought, heat, and combined stresses by comparing stress-induced against un-stressed and input controls. CONCLUSION Our study provides a comprehensive and reproducible epigenomic analysis of drought, heat, and combined stress responses in switchgrass. Significant enrichment of H3K4me3 peaks downstream of the TSS of protein-coding genes was observed. In addition, the cost-effective experimental design, modified ChIP-Seq approach, and analyses presented here can serve as a prototype for other non-model plant species for conducting stress studies.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA.
| | | | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Rita Hayford
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Desalegn D Serba
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | | | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
- Center for Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE, 19901, USA
| |
Collapse
|
5
|
Aslhashemi A, Karamati MR, Motavalli H, Bastami M. Modeling of covalent modifications of histones to estimate the binding affinity. Chromosoma 2023; 132:247-256. [PMID: 37209163 DOI: 10.1007/s00412-023-00798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Covalent histone modifications such as methylation, acetylation, phosphorylation, and other epigenetic modifications of the chromatin play an essential role in regulating eukaryotic cells of which most of these reactions are catalyzed by the enzymes. The binding energy of enzymes is often determined by experimental data via mathematical and statistical models due to specific modifications. Many theoretical models have been introduced to study histone modifications and reprogramming experiments in mammalian cells, in which all efforts in determining the affinity binding are essential part of the work. Here, we introduce a one-dimensional statistical Potts model to accurately determine the enzyme's binding free energy using the experimental data for various types of cells. We study the methylation of lysine 4 and 27 on histone H3 and suppose that each histone has one modification site with one of the seven states: H3K27me3, H3K27me2, H3K27me1, unmodified, H3K4me1, H3K4me2, and H3K4me3. Based on this model, the histone covalent modification is described. Moreover, by using simulation data, the histone's binding free energy and the energy of chromatin states are determined, when they are subject to changes from unmodified to active or repressive states, by finding the probability of the transition.
Collapse
Affiliation(s)
- Ali Aslhashemi
- Faculty of Physics, University of Tabriz, Tabriz, 5167618949, Iran.
| | | | | | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Lei P, Yu F, Liu X. Recent advances in cellular degradation and nuclear control of leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5472-5486. [PMID: 37453102 DOI: 10.1093/jxb/erad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Senescence is the final stage of plant growth and development, and is a highly regulated process at the molecular, cellular, and organismal levels. When triggered by age, hormonal, or environmental cues, plants actively adjust their metabolism and gene expression to execute the progression of senescence. Regulation of senescence is vital for the reallocation of nutrients to sink organs, to ensure reproductive success and adaptations to stresses. Identification and characterization of hallmarks of leaf senescence are of great importance for understanding the molecular regulatory mechanisms of plant senescence, and breeding future crops with more desirable senescence traits. Tremendous progress has been made in elucidating the genetic network underpinning the metabolic and cellular changes in leaf senescence. In this review, we focus on three hallmarks of leaf senescence - chlorophyll and chloroplast degradation, loss of proteostasis, and activation of senescence-associated genes (SAGs), and discuss recent findings of the molecular players and the crosstalk of senescence pathways.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Lee HG, Jeong YY, Lee H, Seo PJ. Arabidopsis HISTONE DEACETYLASE 9 Stimulates Hypocotyl Cell Elongation by Repressing GIGANTEA Expression Under Short Day Photoperiod. FRONTIERS IN PLANT SCIENCE 2022; 13:950378. [PMID: 35923878 PMCID: PMC9341324 DOI: 10.3389/fpls.2022.950378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Developmental plasticity contributes to plant adaptation and fitness in a given condition. Hypocotyl elongation is under the tight control of complex genetic networks encompassing light, circadian, and photoperiod signaling. In this study, we demonstrate that HISTONE DEACETYLASE 9 (HDA9) mediates day length-dependent hypocotyl cell elongation. HDA9 binds to the GIGANTEA (GI) locus involved in photoperiodic hypocotyl elongation. The short day (SD)-accumulated HDA9 protein promotes histone H3 deacetylation at the GI locus during the dark period, promoting hypocotyl elongation. Consistently, HDA9-deficient mutants display reduced hypocotyl length, along with an increase in GI gene expression, only under SD conditions. Taken together, our study reveals the genetic basis of day length-dependent cell elongation in plants.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Yeong Yeop Jeong
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
8
|
Miryeganeh M. Epigenetic Mechanisms of Senescence in Plants. Cells 2022; 11:251. [PMID: 35053367 PMCID: PMC8773728 DOI: 10.3390/cells11020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Senescence is a major developmental transition in plants that requires a massive reprogramming of gene expression and includes various layers of regulations. Senescence is either an age-dependent or a stress-induced process, and is under the control of complex regulatory networks that interact with each other. It has been shown that besides genetic reprogramming, which is an important aspect of plant senescence, transcription factors and higher-level mechanisms, such as epigenetic and small RNA-mediated regulators, are also key factors of senescence-related genes. Epigenetic mechanisms are an important layer of this multilevel regulatory system that change the activity of transcription factors (TFs) and play an important role in modulating the expression of senescence-related gene. They include chromatin remodeling, DNA methylation, histone modification, and the RNA-mediated control of transcription factors and genes. This review provides an overview of the known epigenetic regulation of plant senescence, which has mostly been studied in the form of leaf senescence, and it also covers what has been reported about whole-plant senescence.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
9
|
Wang Q, Yung WS, Wang Z, Lam HM. The histone modification H3K4me3 marks functional genes in soybean nodules. Genomics 2020; 112:5282-5294. [PMID: 32987152 DOI: 10.1016/j.ygeno.2020.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Nitrogen fixation in legumes requires the development of specialized organs called root nodules. Here we characterized the high-confidence transcriptome and genome-wide patterns of H3K4me3 marks in soybean roots and mature nodules symbiotic with Sinorhizobium fredii. Changes in H3K4me3 levels were positively associated with the transcription levels of functional genes in the nodules. The up-regulation of H3K4me3 levels was not only present in leghaemoglobin and nodulin-related genes, but also in genes involved in nitrogen and carbon metabolic pathways. In addition, genes regulating the transmembrane transport of metal ions, phosphates, sulphates, peptides, and sugars were differentially modified. On the contrary, a loss of H3K4me3 marks was found in several key transcription factor genes and was correlated with the down-regulation of the defense-related network in nodules, which could contribute to nodule maintenance. All these findings demonstrate massive reprogramming of gene expressions via alterations in H3K4me3 levels in the genes in mature soybean nodules.
Collapse
Affiliation(s)
- Qianwen Wang
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Shing Yung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
10
|
Ostrowska-Mazurek A, Kasprzak P, Kubala S, Zaborowska M, Sobieszczuk-Nowicka E. Epigenetic Landmarks of Leaf Senescence and Crop Improvement. Int J Mol Sci 2020; 21:ijms21145125. [PMID: 32698545 PMCID: PMC7404090 DOI: 10.3390/ijms21145125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
This review synthesizes knowledge on epigenetic regulation of leaf senescence and discusses the possibility of using this knowledge to improve crop quality. This control level is implemented by different but interacting epigenetic mechanisms, including DNA methylation, covalent histone modifications, and non-covalent chromatin remodeling. The genetic and epigenetic changes may act alone or together and regulate the gene expression, which may result in heritable (stress memory) changes and may lead to crop survival. In the review, the question also arises whether the mitotically stable epigenetic information can be used for crop improvement. The barley crop model for early and late events of dark-induced leaf senescence (DILS), where the point of no return was defined, revealed differences in DNA and RNA modifications active in DILS compared to developmental leaf senescence. This suggests the possibility of a yet-to-be-discovered epigenetic-based switch between cell survival and cell death. Conclusions from the analyzed research contributed to the hypothesis that chromatin-remodeling mechanisms play a role in the control of induced leaf senescence. Understanding this mechanism in crops might provide a tool for further exploitation toward sustainable agriculture: so-called epibreeding.
Collapse
Affiliation(s)
- Agnieszka Ostrowska-Mazurek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.O.-M.); (P.K.)
| | - Piotr Kasprzak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.O.-M.); (P.K.)
| | - Szymon Kubala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland; (S.K.); (M.Z.)
| | - Magdalena Zaborowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland; (S.K.); (M.Z.)
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.O.-M.); (P.K.)
- Correspondence: ; Tel.: +48-61-829-5892
| |
Collapse
|
11
|
Zhao N, Zhang K, Wang C, Yan H, Liu Y, Xu W, Su Z. Systematic Analysis of Differential H3K27me3 and H3K4me3 Deposition in Callus and Seedling Reveals the Epigenetic Regulatory Mechanisms Involved in Callus Formation in Rice. Front Genet 2020; 11:766. [PMID: 32765593 PMCID: PMC7379484 DOI: 10.3389/fgene.2020.00766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth and development occurs through meristematic cell activity, and cell fate transition is accompanied by epigenetic modifications. Callus with cell pluripotency exhibits the ability to undergo continued cell division, and is ideal for studying plant meristematic differentiation. By comparing the differential epigenetic modifications between callus and seedling, the changes in chromatin state and effects of various epigenetic modifications on the growth and development of plants can be revealed, and the key genes related to plant growth and development can be identified, providing novel insights into the regulation of plant growth and development. In this study, we performed ChIP assays using various antibodies in rice seed-induced callus and seedlings grown for about 15 days to examine the differential deposition of H3K27me3 and H3K4me3. Furthermore, data for DNase I-hypersensitive sites in the corresponding tissues were downloaded from National Center for Biotechnology Information. We analyzed 4,562 callus H3K27me3-decreased genes especially those encoding transcription factors in callus, and found that most of the transcription factors, including AP2-ERREBP, NAC, and HB gene families, were related to growth and development. Genes related to meristemization, such as OsWOX9, OsWOX11, OsPLT4, OsPLT5, and OsSHR, were also included. In contrast, H3K4me3 positively regulated callus characteristics through its higher deposition in the callus than in the seedling. We further performed transcriptomic analysis on 45 sets of Affymetrix GeneChip arrays and identified 1,565 genes preferentially expressed in the callus. Callus development and root development in rice were found to share a common regulatory mechanism. We found that these genes, which are associated with meristems, require the removal of H3K27me3 and the deposition of H3K4me3, and DNase I-hypersensitive sites to maintain a relatively active state in the callus than in the seedling. The present study provides novel data about the epigenetic mechanisms involved in callus formation and additional resources for the study of cell division and differentiation in plants.
Collapse
Affiliation(s)
- Nannan Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Transcriptional and Epigenetic Regulation of Autophagy in Plants. Trends Genet 2020; 36:676-688. [PMID: 32674948 DOI: 10.1016/j.tig.2020.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/12/2023]
Abstract
Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are just beginning to emerge. Accumulating evidence reveals a coordinated expression of plant autophagy genes in response to diverse developmental states and growth conditions. Here, we summarize recent progress in the identification of tightly controlled transcription factors and histone marks associated with the autophagic process in plants, and propose several modules, consisting of transcription regulators and epigenetic modifiers, as important nuclear players that could contribute to both short-term and long-term controls of plant autophagy at the transcriptional and post-transcriptional levels.
Collapse
|
13
|
Zhou H, Liu Y, Liang Y, Zhou D, Li S, Lin S, Dong H, Huang L. The function of histone lysine methylation related SET domain group proteins in plants. Protein Sci 2020; 29:1120-1137. [PMID: 32134523 DOI: 10.1002/pro.3849] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/08/2022]
Abstract
Histone methylation, which is mediated by the histone lysine (K) methyltransferases (HKMTases), is a mechanism associated with many pathways in eukaryotes. Most HKMTases have a conserved SET (Su(var) 3-9,E(z),Trithorax) domain, while the HKMTases with SET domains are called the SET domain group (SDG) proteins. In plants, only SDG proteins can work as HKMTases. In this review, we introduced the classification of SDG family proteins in plants and the structural characteristics of each subfamily, surmise the functions of SDG family members in plant growth and development processes, including pollen and female gametophyte development, flowering, plant morphology and the responses to stresses. This review will help researchers better understand the SDG proteins and histone methylation in plants and lay a basic foundation for further studies on SDG proteins.
Collapse
Affiliation(s)
- Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yanhong Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yuwei Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Shuifeng Li
- Hangzhou Xiaoshan District Agricultural Technology Extension Center, Hangzhou, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Foroozani M, Zahraeifard S, Oh DH, Wang G, Dassanayake M, Smith AP. Low-Phosphate Chromatin Dynamics Predict a Cell Wall Remodeling Network in Rice Shoots. PLANT PHYSIOLOGY 2020; 182:1494-1509. [PMID: 31857425 PMCID: PMC7054884 DOI: 10.1104/pp.19.01153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential plant macronutrient vital to fundamental metabolic processes. Plant-available P is low in most soils, making it a frequent limiter of growth. Declining P reserves for fertilizer production exacerbates this agricultural challenge. Plants modulate complex responses to fluctuating P levels via global transcriptional regulatory networks. Although chromatin structure plays a substantial role in controlling gene expression, the chromatin dynamics involved in regulating P homeostasis have not been determined. Here we define distinct chromatin states across the rice (Oryza sativa) genome by integrating multiple chromatin marks, including the H2A.Z histone variant, H3K4me3 modification, and nucleosome positioning. In response to P starvation, 40% of all protein-coding genes exhibit a transition from one chromatin state to another at their transcription start site. Several of these transitions are enriched in subsets of genes differentially expressed under P deficiency. The most prominent subset supports the presence of a coordinated signaling network that targets cell wall structure and is regulated in part via a decrease of H3K4me3 at transcription start sites. The P starvation-induced chromatin dynamics and correlated genes identified here will aid in enhancing P use efficiency in crop plants, benefitting global agriculture.
Collapse
Affiliation(s)
- Maryam Foroozani
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Sara Zahraeifard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|