1
|
Guo Z, Li Z, Zhang M, Bao M, He B, Zhou X. LncRNA FAS-AS1 upregulated by its genetic variation rs6586163 promotes cell apoptosis in nasopharyngeal carcinoma through regulating mitochondria function and Fas splicing. Sci Rep 2023; 13:8218. [PMID: 37217794 DOI: 10.1038/s41598-023-35502-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common head and neck malignant with a high incidence in Southern China. Genetic aberrations play a vital role in the pathogenesis, progression and prognosis of NPC. In the present study, we elucidated the underlying mechanism of FAS-AS1 and its genetic variation rs6586163 in NPC. We demonstrated that FAS-AS1 rs6586163 variant genotype carriers were associated with lower risk of NPC (CC vs. AA, OR = 0.645, P = 0.006) and better overall survival (AC + CC vs. AA, HR = 0.667, P = 0.030). Mechanically, rs6586163 increased the transcriptional activity of FAS-AS1 and contributed to ectopic overexpression of FAS-AS1 in NPC. rs6586163 also exhibited an eQTL trait and the genes affected by rs6586163 were enriched in apoptosis related signaling pathway. FAS-AS1 was downregulated in NPC tissues and over-expression of FAS-AS1 was associated with early clinical stage and better short-term treatment efficacy for NPC patients. Overexpression of FAS-AS1 inhibited NPC cell viability and promoted cell apoptosis. GSEA analysis of RNA-seq data suggested FAS-AS1 participate in mitochondria regulation and mRNA alternative splicing. Transmission electron microscopic examination verified that the mitochondria was swelled, the mitochondrial cristae was fragmented or disappeared, and their structures were destroyed in FAS-AS1 overexpressed cells. Furthermore, we identified HSP90AA1, CS, BCL2L1, SOD2 and PPARGC1A as the top 5 hub genes of FAS-AS1 regulated genes involved in mitochondria function. We also proved FAS-AS1 could affect Fas splicing isoform sFas/mFas expression ratio, and apoptotic protein expression, thus leading to increased apoptosis. Our study provided the first evidence that FAS-AS1 and its genetic polymorphism rs6586163 triggered apoptosis in NPC, which might have a potential as new biomarkers for NPC susceptibility and prognosis.
Collapse
Affiliation(s)
- Zhen Guo
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China
- Hunan Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, People's Republic of China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - ZiBo Li
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China
| | - MengLing Zhang
- School of Stomatology, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - MeiHua Bao
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China
| | - BinSheng He
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China
| | - XiaoLong Zhou
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China.
- Hunan Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, People's Republic of China.
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China.
| |
Collapse
|
2
|
Xie GB, Chen RB, Lin ZY, Gu GS, Yu JR, Liu ZG, Cui J, Lin LQ, Chen LC. Predicting lncRNA-disease associations based on combining selective similarity matrix fusion and bidirectional linear neighborhood label propagation. Brief Bioinform 2023; 24:6966536. [PMID: 36592062 DOI: 10.1093/bib/bbac595] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/03/2023] Open
Abstract
Recent studies have revealed that long noncoding RNAs (lncRNAs) are closely linked to several human diseases, providing new opportunities for their use in detection and therapy. Many graph propagation and similarity fusion approaches can be used for predicting potential lncRNA-disease associations. However, existing similarity fusion approaches suffer from noise and self-similarity loss in the fusion process. To address these problems, a new prediction approach, termed SSMF-BLNP, based on organically combining selective similarity matrix fusion (SSMF) and bidirectional linear neighborhood label propagation (BLNP), is proposed in this paper to predict lncRNA-disease associations. In SSMF, self-similarity networks of lncRNAs and diseases are obtained by selective preprocessing and nonlinear iterative fusion. The fusion process assigns weights to each initial similarity network and introduces a unit matrix that can reduce noise and compensate for the loss of self-similarity. In BLNP, the initial lncRNA-disease associations are employed in both lncRNA and disease directions as label information for linear neighborhood label propagation. The propagation was then performed on the self-similarity network obtained from SSMF to derive the scoring matrix for predicting the relationships between lncRNAs and diseases. Experimental results showed that SSMF-BLNP performed better than seven other state of-the-art approaches. Furthermore, a case study demonstrated up to 100% and 80% accuracy in 10 lncRNAs associated with hepatocellular carcinoma and 10 lncRNAs associated with renal cell carcinoma, respectively. The source code and datasets used in this paper are available at: https://github.com/RuiBingo/SSMF-BLNP.
Collapse
Affiliation(s)
- Guo-Bo Xie
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Rui-Bin Chen
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhi-Yi Lin
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Guo-Sheng Gu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Jun-Rui Yu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhen-Guo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ji Cui
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lie-Qing Lin
- Center of Campus Network & Modern Educational Technology, Guangdong University of Technology, Guangzhou, 510000, China
| | - Lang-Cheng Chen
- Center of Campus Network & Modern Educational Technology, Guangdong University of Technology, Guangzhou, 510000, China
| |
Collapse
|
3
|
Liu H, Bing P, Zhang M, Tian G, Ma J, Li H, Bao M, He K, He J, He B, Yang J. MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm. Comput Struct Biotechnol J 2023; 21:1414-1423. [PMID: 36824227 PMCID: PMC9941872 DOI: 10.1016/j.csbj.2022.12.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Identifying the potential associations between microbes and diseases is the first step for revealing the pathological mechanisms of microbe-associated diseases. However, traditional culture-based microbial experiments are expensive and time-consuming. Thus, it is critical to prioritize disease-associated microbes by computational methods for further experimental validation. In this study, we proposed a novel method called MNNMDA, to predict microbe-disease associations (MDAs) by applying a Matrix Nuclear Norm method into known microbe and disease data. Specifically, we first calculated Gaussian interaction profile kernel similarity and functional similarity for diseases and microbes. Then we constructed a heterogeneous information network by combining the integrated disease similarity network, the integrated microbe similarity network and the known microbe-disease bipartite network. Finally, we formulated the microbe-disease association prediction problem as a low-rank matrix completion problem, which was solved by minimizing the nuclear norm of a matrix with a few regularization terms. We tested the performances of MNNMDA in three datasets including HMDAD, Disbiome, and Combined Data with small, medium and large sizes respectively. We also compared MNNMDA with 5 state-of-the-art methods including KATZHMDA, LRLSHMDA, NTSHMDA, GATMDA, and KGNMDA, respectively. MNNMDA achieved area under the ROC curves (AUROC) of 0.9536 and 0.9364 respectively on HDMAD and Disbiome, better than the AUCs of compared methods under the 5-fold cross-validation for all microbe-disease associations. It also obtained a relatively good performance with AUROC 0.8858 in the combined data. In addition, MNNMDA was also better than other methods in area under precision and recall curve (AUPR) under the 5-fold cross-validation for all associations, and in both AUROC and AUPR under the 5-fold cross-validation for diseases and the 5-fold cross-validation for microbes. Finally, the case studies on colon cancer and inflammatory bowel disease (IBD) also validated the effectiveness of MNNMDA. In conclusion, MNNMDA is an effective method in predicting microbe-disease associations. Availability The codes and data for this paper are freely available at Github https://github.com/Haiyan-Liu666/MNNMDA.
Collapse
Affiliation(s)
- Haiyan Liu
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,College of Information Engineering, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China
| | - Meijun Zhang
- Geneis Beijing Co., Ltd., Beijing 100102, PR China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing 100102, PR China
| | - Jun Ma
- College of Information Engineering, Changsha Medical University, Changsha 410219, PR China
| | - Haigang Li
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China
| | - Meihua Bao
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China
| | - Kunhui He
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China
| | - Jianjun He
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China,Corresponding authors at: Academician Workstation, Changsha Medical University, Changsha 410219, PR China.
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China,Corresponding authors at: Academician Workstation, Changsha Medical University, Changsha 410219, PR China.
| | - Jialiang Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,Geneis Beijing Co., Ltd., Beijing 100102, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China,Corresponding authors at: Academician Workstation, Changsha Medical University, Changsha 410219, PR China.
| |
Collapse
|
4
|
Wei Z, Yao D, Zhan X, Zhang S. A clustering-based sampling method for miRNA-disease association prediction. Front Genet 2022; 13:995535. [PMID: 36176298 PMCID: PMC9513605 DOI: 10.3389/fgene.2022.995535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
More and more studies have proved that microRNAs (miRNAs) play a critical role in gene expression regulation, and the irregular expression of miRNAs tends to be associated with a variety of complex human diseases. Because of the high cost and low efficiency of identifying disease-associated miRNAs through biological experiments, scholars have focused on predicting potential disease-associated miRNAs by computational methods. Considering that the existing methods are flawed in constructing negative sample set, we proposed a clustering-based sampling method for miRNA-disease association prediction (CSMDA). Firstly, we integrated multiple similarity information of miRNA and disease to represent miRNA-disease pairs. Secondly, we performed a clustering-based sampling method to avoid introducing potential positive samples when constructing negative sample set. Thirdly, we employed a random forest-based feature selection method to reduce noise and redundant information in the high-dimensional feature space. Finally, we implemented an ensemble learning framework for predicting miRNA-disease associations by soft voting. The Precision, Recall, F1-score, AUROC and AUPR of the CSMDA achieved 0.9676, 0.9545, 0.9610, 0.9928, and 0.9940, respectively, under five-fold cross-validation. Besides, case study on three cancers showed that the top 20 potentially associated miRNAs predicted by the CSMDA were confirmed by the dbDEMC database or literatures. The above results demonstrate that the CSMDA can predict potential disease-associated miRNAs more accurately.
Collapse
Affiliation(s)
- Zheng Wei
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Dengju Yao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
- *Correspondence: Dengju Yao,
| | - Xiaojuan Zhan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
- College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin, China
| | - Shuli Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| |
Collapse
|
5
|
Zhang Y, Chen M, Huang L, Xie X, Li X, Jin H, Wang X, Wei H. Fusion of KATZ measure and space projection to fast probe potential lncRNA-disease associations in bipartite graphs. PLoS One 2021; 16:e0260329. [PMID: 34807960 PMCID: PMC8608294 DOI: 10.1371/journal.pone.0260329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/06/2021] [Indexed: 11/19/2022] Open
Abstract
It is well known that numerous long noncoding RNAs (lncRNAs) closely relate to the physiological and pathological processes of human diseases and can serves as potential biomarkers. Therefore, lncRNA-disease associations that are identified by computational methods as the targeted candidates reduce the cost of biological experiments focusing on deep study furtherly. However, inaccurate construction of similarity networks and inadequate numbers of observed known lncRNA–disease associations, such inherent problems make many mature computational methods that have been developed for many years still exit some limitations. It motivates us to explore a new computational method that was fused with KATZ measure and space projection to fast probing potential lncRNA-disease associations (namely KATZSP). KATZSP is comprised of following key steps: combining all the global information with which to change Boolean network of known lncRNA–disease associations into the weighted networks; changing the similarities calculation into counting the number of walks that connect lncRNA nodes and disease nodes in bipartite graphs; obtaining the space projection scores to refine the primary prediction scores. The process to fuse KATZ measure and space projection was simplified and uncomplicated with needing only one attenuation factor. The leave-one-out cross validation (LOOCV) experimental results showed that, compared with other state-of-the-art methods (NCPLDA, LDAI-ISPS and IIRWR), KATZSP had a higher predictive accuracy shown with area-under-the-curve (AUC) value on the three datasets built, while KATZSP well worked on inferring potential associations related to new lncRNAs (or isolated diseases). The results from real cases study (such as pancreas cancer, lung cancer and colorectal cancer) further confirmed that KATZSP is capable of superior predictive ability to be applied as a guide for traditional biological experiments.
Collapse
Affiliation(s)
- Yi Zhang
- School of Information Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, China
| | - Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, China
- The Future Laboratory, Tsinghua University, Beijing, China
| | - Xiaolan Xie
- School of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Xin Li
- School of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Hong Jin
- School of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Xiaohua Wang
- Pharmacy School, Guilin Medical University, Guilin, China
| | - Hanyan Wei
- Pharmacy School, Guilin Medical University, Guilin, China
| |
Collapse
|
6
|
Yao Y, Ji B, Lv Y, Li L, Xiang J, Liao B, Gao W. Predicting LncRNA-Disease Association by a Random Walk With Restart on Multiplex and Heterogeneous Networks. Front Genet 2021; 12:712170. [PMID: 34490041 PMCID: PMC8417042 DOI: 10.3389/fgene.2021.712170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 02/05/2023] Open
Abstract
Studies have found that long non-coding RNAs (lncRNAs) play important roles in many human biological processes, and it is critical to explore potential lncRNA-disease associations, especially cancer-associated lncRNAs. However, traditional biological experiments are costly and time-consuming, so it is of great significance to develop effective computational models. We developed a random walk algorithm with restart on multiplex and heterogeneous networks of lncRNAs and diseases to predict lncRNA-disease associations (MHRWRLDA). First, multiple disease similarity networks are constructed by using different approaches to calculate similarity scores between diseases, and multiple lncRNA similarity networks are also constructed by using different approaches to calculate similarity scores between lncRNAs. Then, a multiplex and heterogeneous network was constructed by integrating multiple disease similarity networks and multiple lncRNA similarity networks with the lncRNA-disease associations, and a random walk with restart on the multiplex and heterogeneous network was performed to predict lncRNA-disease associations. The results of Leave-One-Out cross-validation (LOOCV) showed that the value of Area under the curve (AUC) was 0.68736, which was improved compared with the classical algorithm in recent years. Finally, we confirmed a few novel predicted lncRNAs associated with specific diseases like colon cancer by literature mining. In summary, MHRWRLDA contributes to predict lncRNA-disease associations.
Collapse
Affiliation(s)
- Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou, China
| | - Binbin Ji
- Geneis Beijing Co., Ltd., Beijing, China
| | - Yaping Lv
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Ling Li
- Basic Courses Department, Zhejiang Shuren University, Hangzhou, China
| | - Ju Xiang
- School of Computer Science and Engineering, Central South University, Changsha, China
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- Department of Computer Science, Changsha Medical University, Changsha, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Wei Gao
- Departments of Internal Medicine-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
7
|
Yao Y, Ji B, Lv Y, Li L, Xiang J, Liao B, Gao W. Predicting LncRNA–Disease Association by a Random Walk With Restart on Multiplex and Heterogeneous Networks. Front Genet 2021. [DOI: https:/doi.org/10.3389/fgene.2021.712170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Studies have found that long non-coding RNAs (lncRNAs) play important roles in many human biological processes, and it is critical to explore potential lncRNA–disease associations, especially cancer-associated lncRNAs. However, traditional biological experiments are costly and time-consuming, so it is of great significance to develop effective computational models. We developed a random walk algorithm with restart on multiplex and heterogeneous networks of lncRNAs and diseases to predict lncRNA–disease associations (MHRWRLDA). First, multiple disease similarity networks are constructed by using different approaches to calculate similarity scores between diseases, and multiple lncRNA similarity networks are also constructed by using different approaches to calculate similarity scores between lncRNAs. Then, a multiplex and heterogeneous network was constructed by integrating multiple disease similarity networks and multiple lncRNA similarity networks with the lncRNA–disease associations, and a random walk with restart on the multiplex and heterogeneous network was performed to predict lncRNA–disease associations. The results of Leave-One-Out cross-validation (LOOCV) showed that the value of Area under the curve (AUC) was 0.68736, which was improved compared with the classical algorithm in recent years. Finally, we confirmed a few novel predicted lncRNAs associated with specific diseases like colon cancer by literature mining. In summary, MHRWRLDA contributes to predict lncRNA–disease associations.
Collapse
|
8
|
Li W, Wang S, Xu J. An Ensemble Matrix Completion Model for Predicting Potential Drugs Against SARS-CoV-2. Front Microbiol 2021; 12:694534. [PMID: 34367094 PMCID: PMC8334363 DOI: 10.3389/fmicb.2021.694534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Because of the catastrophic outbreak of global coronavirus disease 2019 (COVID-19) and its strong infectivity and possible persistence, computational repurposing of existing approved drugs will be a promising strategy that facilitates rapid clinical treatment decisions and provides reasonable justification for subsequent clinical trials and regulatory reviews. Since the effects of a small number of conditionally marketed vaccines need further clinical observation, there is still an urgent need to quickly and effectively repurpose potentially available drugs before the next disease peak. In this work, we have manually collected a set of experimentally confirmed virus-drug associations through the publicly published database and literature, consisting of 175 drugs and 95 viruses, as well as 933 virus-drug associations. Then, because the samples are extremely sparse and unbalanced, negative samples cannot be easily obtained. We have developed an ensemble model, EMC-Voting, based on matrix completion and weighted soft voting, a semi-supervised machine learning model for computational drug repurposing. Finally, we have evaluated the prediction performance of EMC-Voting by fivefold crossing-validation and compared it with other baseline classifiers and prediction models. The case study for the virus SARS-COV-2 included in the dataset demonstrates that our model achieves the outperforming AUPR value of 0.934 in virus-drug association's prediction.
Collapse
Affiliation(s)
| | - Shulin Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | | |
Collapse
|
9
|
Liu Z, Hong ZP, Xi SX. RUNX3 Expression Level Is Correlated with the Clinical and Pathological Characteristics in Endometrial Cancer: A Systematic Review and Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9995384. [PMID: 34337071 PMCID: PMC8298141 DOI: 10.1155/2021/9995384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
Human Runt-associated transcription factor 3 (RUNX3) plays an important role in the development and progression of endometrial cancer (EC). However, the clinical and pathological significance of RUNX3 in EC needs to be further studied. In order to clarify the clinical and pathological significance of RUNX3, a systematic review and meta-analysis was conducted in EC patients. Keywords RUNX3, endometrial cancer, and uterine cancer were searched in Cochrane Library, Web of Knowledge, PubMed, CBM, MEDLINE, and Chinese CNKI database for data up to Dec 31, 2018. References, abstracts, and meeting proceedings were manually searched in supplementary. Outcomes were various clinical and pathological features. The two reviewers performed the literature searching, data extracting, and method assessing independently. Meta-analysis was performed by RevMan5.3.0. A total of 563 EC patients were enrolled from eight studies. Meta-analysis results showed that the expression of RUNX3 has significant differences in these comparisons: lymph node (LN) metastasis vs. non-LN metastasis (P = 0.26), EC tissues vs. normal tissues (P < 0.00001), clinical stages I/II vs. II/IV (P < 0.00001), muscular infiltration < 1/2 vs. muscular infiltration ≥ 1/2 (P < 0.00001), and G1 vs. G2/G3 (P < 0.00001). The decreasing expression of RUNX3 is associated with poor TNM stage and muscular infiltration. It is indicated that RUNX3 was involved in the suppression effect of EC. However, further multicenter randomized controlled trials are needed considering the small sample size of the included trials.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Zhi-pan Hong
- Department of Tumor Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Shu-xue Xi
- Geneis (Beijing) Co. Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| |
Collapse
|
10
|
Yan C, Zhang Z, Bao S, Hou P, Zhou M, Xu C, Sun J. Computational Methods and Applications for Identifying Disease-Associated lncRNAs as Potential Biomarkers and Therapeutic Targets. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:156-171. [PMID: 32585624 PMCID: PMC7321789 DOI: 10.1016/j.omtn.2020.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been recognized as critical components of a broad genomic regulatory network and play pivotal roles in physiological and pathological processes. Identification of disease-associated lncRNAs is becoming increasingly crucial for fundamentally improving our understanding of molecular mechanisms of disease and developing novel biomarkers and therapeutic targets. Considering lower efficiency and higher time and labor cost of biological experiments, computer-aided inference of disease-associated RNAs has become a promising avenue for facilitating the study of lncRNA functions and provides complementary value for experimental studies. In this study, we first summarize data and knowledge resources publicly available for the study of lncRNA-disease associations. Then, we present an updated systematic overview of dozens of computational methods and models for inferring lncRNA-disease associations proposed in recent years. Finally, we explore the perspectives and challenges for further studies. Our study provides a guide for biologists and medical scientists to look for dedicated resources and more competent tools for accelerating the unraveling of disease-associated lncRNAs.
Collapse
Affiliation(s)
- Congcong Yan
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P.R. China
| | - Zicheng Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P.R. China
| | - Siqi Bao
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P.R. China
| | - Ping Hou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P.R. China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P.R. China
| | - Chongyong Xu
- Department of Radiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, P.R. China.
| | - Jie Sun
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P.R. China.
| |
Collapse
|