1
|
Li H, Qian Y, Sun Z, Zhu H. Prediction of circRNA-Disease Associations via Graph Isomorphism Transformer and Dual-Stream Neural Predictor. Biomolecules 2025; 15:234. [PMID: 40001537 PMCID: PMC11853643 DOI: 10.3390/biom15020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Circular RNAs (circRNAs) have attracted increasing attention for their roles in human diseases, making the prediction of circRNA-disease associations (CDAs) a critical research area for advancing disease diagnosis and treatment. However, traditional experimental methods for exploring CDAs are time-consuming and resource-intensive, while existing computational models often struggle with the sparsity of CDA data and fail to uncover potential associations effectively. To address these challenges, we propose a novel CDA prediction method named the Graph Isomorphism Transformer with Dual-Stream Neural Predictor (GIT-DSP), which leverages knowledge graph technology to address data sparsity and predict CDAs more effectively. Specifically, the model incorporates multiple associations between circRNAs, diseases, and other non-coding RNAs (e.g., lncRNAs, and miRNAs) to construct a multi-source heterogeneous knowledge graph, thereby expanding the scope of CDA exploration. Subsequently, a Graph Isomorphism Transformer model is proposed to fully exploit both local and global association information within the knowledge graph, enabling deeper insights into potential CDAs. Furthermore, a Dual-Stream Neural Predictor is introduced to accurately predict complex circRNA-disease associations in the knowledge graph by integrating dual-stream predictive features. Experimental results demonstrate that GIT-DSP outperforms existing state-of-the-art models, offering valuable insights for precision medicine and disease-related research.
Collapse
Affiliation(s)
| | | | | | - Haodong Zhu
- School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (H.L.); (Y.Q.); (Z.S.)
| |
Collapse
|
2
|
Turgut H, Turanli B, Boz B. DCDA: CircRNA-Disease Association Prediction with Feed-Forward Neural Network and Deep Autoencoder. Interdiscip Sci 2024; 16:91-103. [PMID: 37978116 DOI: 10.1007/s12539-023-00590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Circular RNA is a single-stranded RNA with a closed-loop structure. In recent years, academic research has revealed that circular RNAs play critical roles in biological processes and are related to human diseases. The discovery of potential circRNAs as disease biomarkers and drug targets is crucial since it can help diagnose diseases in the early stages and be used to treat people. However, in conventional experimental methods, conducting experiments to detect associations between circular RNAs and diseases is time-consuming and costly. To overcome this problem, various computational methodologies are proposed to extract essential features for both circular RNAs and diseases and predict the associations. Studies showed that computational methods successfully predicted performance and made it possible to detect possible highly related circular RNAs for diseases. This study proposes a deep learning-based circRNA-disease association predictor methodology called DCDA, which uses multiple data sources to create circRNA and disease features and reveal hidden feature codings of a circular RNA-disease pair with a deep autoencoder, then predict the relation score of the pair by a deep neural network. Fivefold cross-validation results on the benchmark dataset showed that our model outperforms state-of-the-art prediction methods in the literature with the AUC score of 0.9794.
Collapse
Affiliation(s)
- Hacer Turgut
- Computer Engineering Department, Marmara University, 34854, Istanbul, Türkiye.
| | - Beste Turanli
- Bioengineering Department, Marmara University, 34854, Istanbul, Türkiye
| | - Betül Boz
- Computer Engineering Department, Marmara University, 34854, Istanbul, Türkiye.
| |
Collapse
|
3
|
Chen Y, Wang J, Wang C, Liu M, Zou Q. Deep learning models for disease-associated circRNA prediction: a review. Brief Bioinform 2022; 23:6696465. [PMID: 36130259 DOI: 10.1093/bib/bbac364] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence indicates that circular RNAs (circRNAs) can provide new insights and potential therapeutic targets for disease diagnosis and treatment. However, traditional biological experiments are expensive and time-consuming. Recently, deep learning with a more powerful ability for representation learning enables it to be a promising technology for predicting disease-associated circRNAs. In this review, we mainly introduce the most popular databases related to circRNA, and summarize three types of deep learning-based circRNA-disease associations prediction methods: feature-generation-based, type-discrimination and hybrid-based methods. We further evaluate seven representative models on benchmark with ground truth for both balance and imbalance classification tasks. In addition, we discuss the advantages and limitations of each type of method and highlight suggested applications for future research.
Collapse
Affiliation(s)
- Yaojia Chen
- College of Electronics and Information Engineering Guangdong Ocean University, Zhanjiang, China and the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiacheng Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Mingxin Liu
- College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, China
| | - Quan Zou
- University of Electronic Science and Technology of China, China
| |
Collapse
|
4
|
Chen J, Lin J, Hu Y, Ye M, Yao L, Wu L, Zhang W, Wang M, Deng T, Guo F, Huang Y, Zhu B, Wang D. RNADisease v4.0: an updated resource of RNA-associated diseases, providing RNA-disease analysis, enrichment and prediction. Nucleic Acids Res 2022; 51:D1397-D1404. [PMID: 36134718 PMCID: PMC9825423 DOI: 10.1093/nar/gkac814] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have shown that RNA plays an important role in the occurrence and development of diseases, and RNA-disease associations are not limited to noncoding RNAs in mammals but also exist for protein-coding RNAs. Furthermore, RNA-associated diseases are found across species including plants and nonmammals. To better analyze diseases at the RNA level and facilitate researchers in exploring the pathogenic mechanism of diseases, we decided to update and change MNDR v3.0 to RNADisease v4.0, a repository for RNA-disease association (http://www.rnadisease.org/ or http://www.rna-society.org/mndr/). Compared to the previous version, new features include: (i) expanded data sources and categories of species, RNA types, and diseases; (ii) the addition of a comprehensive analysis of RNAs from thousands of high-throughput sequencing data of cancer samples and normal samples; (iii) the addition of an RNA-disease enrichment tool and (iv) the addition of four RNA-disease prediction tools. In summary, RNADisease v4.0 provides a comprehensive and concise data resource of RNA-disease associations which contains a total of 3 428 058 RNA-disease entries covering 18 RNA types, 117 species and 4090 diseases to meet the needs of biological research and lay the foundation for future therapeutic applications of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Le Wu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhai Zhang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meiyi Wang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tingting Deng
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Feng Guo
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bofeng Zhu
- Correspondence may also be addressed to Bofeng Zhu. Tel: +86 20 61648787; Fax: +86 20 61648787;
| | - Dong Wang
- To whom correspondence should be addressed. Tel: +86 20 61648279; Fax: +86 20 61648279;
| |
Collapse
|
5
|
Dai Q, Liu Z, Wang Z, Duan X, Guo M. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs. Brief Bioinform 2022; 23:6692549. [PMID: 36070619 DOI: 10.1093/bib/bbac379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION CircularRNA (circRNA) is a class of noncoding RNA with high conservation and stability, which is considered as an important disease biomarker and drug target. Accumulating pieces of evidence have indicated that circRNA plays a crucial role in the pathogenesis and progression of many complex diseases. As the biological experiments are time-consuming and labor-intensive, developing an accurate computational prediction method has become indispensable to identify disease-related circRNAs. RESULTS We presented a hybrid graph representation learning framework, named GraphCDA, for predicting the potential circRNA-disease associations. Firstly, the circRNA-circRNA similarity network and disease-disease similarity network were constructed to characterize the relationships of circRNAs and diseases, respectively. Secondly, a hybrid graph embedding model combining Graph Convolutional Networks and Graph Attention Networks was introduced to learn the feature representations of circRNAs and diseases simultaneously. Finally, the learned representations were concatenated and employed to build the prediction model for identifying the circRNA-disease associations. A series of experimental results demonstrated that GraphCDA outperformed other state-of-the-art methods on several public databases. Moreover, GraphCDA could achieve good performance when only using a small number of known circRNA-disease associations as the training set. Besides, case studies conducted on several human diseases further confirmed the prediction capability of GraphCDA for predicting potential disease-related circRNAs. In conclusion, extensive experimental results indicated that GraphCDA could serve as a reliable tool for exploring the regulatory role of circRNAs in complex diseases.
Collapse
Affiliation(s)
- Qiguo Dai
- School of Computer Science and Engineering, Dalian Minzu University, 116600, Dalian, China.,SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600, Dalian, China
| | - Ziqiang Liu
- School of Computer Science and Engineering, Dalian Minzu University, 116600, Dalian, China.,SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600, Dalian, China
| | - Zhaowei Wang
- SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600, Dalian, China.,School of Computer Science and Technology, Dalian University of Technology, 116024, Dalian, China
| | - Xiaodong Duan
- SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600, Dalian, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| |
Collapse
|
6
|
Wang CC, Han CD, Zhao Q, Chen X. Circular RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2021; 22:bbab286. [PMID: 34329377 PMCID: PMC8575014 DOI: 10.1093/bib/bbab286] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease associations and divide them into two categories, namely network algorithm-based and machine learning-based models. Subsequently, several evaluation methods of prediction performance of these computational models are summarized. Finally, we analyze the advantages and disadvantages of different types of computational models and provide some suggestions to promote the development of circRNA-disease association identification from the perspective of the construction of new computational models and the accumulation of circRNA-related data.
Collapse
Affiliation(s)
- Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chen-Di Han
- School of Information and Control Engineering, China University of Mining and Technology
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning
| | - Xing Chen
- China University of Mining and Technology
| |
Collapse
|
7
|
Xiao Q, Dai J, Luo J. A survey of circular RNAs in complex diseases: databases, tools and computational methods. Brief Bioinform 2021; 23:6407737. [PMID: 34676391 DOI: 10.1093/bib/bbab444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) are a category of novelty discovered competing endogenous non-coding RNAs that have been proved to implicate many human complex diseases. A large number of circRNAs have been confirmed to be involved in cancer progression and are expected to become promising biomarkers for tumor diagnosis and targeted therapy. Deciphering the underlying relationships between circRNAs and diseases may provide new insights for us to understand the pathogenesis of complex diseases and further characterize the biological functions of circRNAs. As traditional experimental methods are usually time-consuming and laborious, computational models have made significant progress in systematically exploring potential circRNA-disease associations, which not only creates new opportunities for investigating pathogenic mechanisms at the level of circRNAs, but also helps to significantly improve the efficiency of clinical trials. In this review, we first summarize the functions and characteristics of circRNAs and introduce some representative circRNAs related to tumorigenesis. Then, we mainly investigate the available databases and tools dedicated to circRNA and disease studies. Next, we present a comprehensive review of computational methods for predicting circRNA-disease associations and classify them into five categories, including network propagating-based, path-based, matrix factorization-based, deep learning-based and other machine learning methods. Finally, we further discuss the challenges and future researches in this field.
Collapse
Affiliation(s)
- Qiu Xiao
- Hunan Normal University and Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Jianhua Dai
- Hunan Normal University and Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
8
|
Zhang Z, Yang B, Zhou S, Wu J. CircRNA circ_SEC24A upregulates DNMT3A expression by sponging miR-26b-5p to aggravate osteoarthritis progression. Int Immunopharmacol 2021; 99:107957. [PMID: 34325283 DOI: 10.1016/j.intimp.2021.107957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic degenerative disease characterized by degeneration and injury of articular cartilage. Circular RNA_SEC24A (circ_SEC24A; circBase ID: hsa_circ_0005105) is upregulated and promotes multiple tumor processes. However, its role in OA progression remained mostly unknown. METHODS Quantitative real-time PCR (qRT-PCR) was used to detect the RNA expression of circ_SEC24A, miR-26b-5p and DNA methyltransferase 3 alpha (DNMT3A). Cell proliferation was verified by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Flow cytometry was used to detect apoptosis. Western blot was used to detect protein expression of DNMT3A, proliferating cell nuclear antigen (PCNA), extracellular matrix (ECM) proteins (Collagen II and Aggrecan), and ECM degrading enzymes (matrix metalloproteinase-13 [MMP13] and metallopeptidase with thrombospondin type 1 motif 5 [ADAMTS5]). The target relationship between miR-26b-5p and circ_SEC24A or DNMT3A was predicted by Statbase3.0 or TargetScan and confirmed by dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation. RESULTS Circ_SEC24A was upregulated in osteoarthritic cartilage tissues and IL-1β-induced chondrocytes, accompanying with miR-26b-5p downregulation and DNMT3A upregulation. Circ_SEC24A expression was resistant to RNase R digestion and mainly expressed in the cytoplasm. Interfering circ_SEC24A abolished IL-1β-induced effects on proliferation inhibition, apoptosis, and ECM degradation in chondrocytes, but overexpressing circ_SEC24A had the opposite effects. Inhibiting miR-26b-5p counteracted but upregulating miR-26a-5p mimicked the functions of circ_SEC24A silencing. Reinforcing DNMT3A reversed miR-26b-5p overexpression's role in IL-1β-induced chondrocytes. Mechanically, circ_SEC24A and DNMT3A were competitive endogenous RNAs (ceRNAs) for miR-26b-5p. CONCLUSION Circ_SEC24A was a promoting factor for IL-1β-induced OA progression via circ_SEC24A/miR-26b-5p/DNMT3A ceRNA axis.
Collapse
Affiliation(s)
- Zhongqiang Zhang
- Department of Joint Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan 421002, China
| | - Bo Yang
- Department of Joint Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan 421002, China
| | - Shuping Zhou
- Department of Sports Medicine, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan 421002, China
| | - Junxing Wu
- Department of Sports Medicine, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan 421002, China.
| |
Collapse
|
9
|
Ning L, Cui T, Zheng B, Wang N, Luo J, Yang B, Du M, Cheng J, Dou Y, Wang D. MNDR v3.0: mammal ncRNA-disease repository with increased coverage and annotation. Nucleic Acids Res 2021; 49:D160-D164. [PMID: 32833025 PMCID: PMC7779040 DOI: 10.1093/nar/gkaa707] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Many studies have indicated that non-coding RNA (ncRNA) dysfunction is closely related to numerous diseases. Recently, accumulated ncRNA-disease associations have made related databases insufficient to meet the demands of biomedical research. The constant updating of ncRNA-disease resources has become essential. Here, we have updated the mammal ncRNA-disease repository (MNDR, http://www.rna-society.org/mndr/) to version 3.0, containing more than one million entries, four-fold increment in data compared to the previous version. Experimental and predicted circRNA-disease associations have been integrated, increasing the number of categories of ncRNAs to five, and the number of mammalian species to 11. Moreover, ncRNA-disease related drug annotations and associations, as well as ncRNA subcellular localizations and interactions, were added. In addition, three ncRNA-disease (miRNA/lncRNA/circRNA) prediction tools were provided, and the website was also optimized, making it more practical and user-friendly. In summary, MNDR v3.0 will be a valuable resource for the investigation of disease mechanisms and clinical treatment strategies.
Collapse
Affiliation(s)
- Lin Ning
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Boyang Zheng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Nuo Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Beilei Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengze Du
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, B24 Yinquan South Road, Qingyuan 511518, Guangdong Province, People's Republic of China
| | - Jun Cheng
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital)
| | - Yiying Dou
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dong Wang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
10
|
Lu C, Zeng M, Wu FX, Li M, Wang J. Improving circRNA-disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks. Bioinformatics 2020; 36:5656-5664. [PMID: 33367690 DOI: 10.1093/bioinformatics/btaa1077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 01/26/2023] Open
Abstract
MOTIVATION Emerging studies indicate that circular RNAs (circRNAs) are widely involved in the progression of human diseases. Due to its special structure which is stable, circRNAs are promising diagnostic and prognostic biomarkers for diseases. However, the experimental verification of circRNA-disease associations is expensive and limited to small-scale. Effective computational methods for predicting potential circRNA-disease associations are regarded as a matter of urgency. Although several models have been proposed, over-reliance on known associations and the absence of characteristics of biological functions make precise predictions are still challenging. RESULTS In this study, we propose a method for predicting CircRNA-Disease Associations based on Sequence and Ontology Representations, named CDASOR, with convolutional and recurrent neural networks. For sequences of circRNAs, we encode them with continuous k-mers, get low-dimensional vectors of k-mers, extract their local feature vectors with 1 D CNN and learn their long-term dependencies with bi-directional long short-term memory. For diseases, we serialize disease ontology into sentences containing the hierarchy of ontology, obtain low-dimensional vectors for disease ontology terms and get terms' dependencies. Furthermore, we get association patterns of circRNAs and diseases from known circRNA-disease associations with neural networks. After the above steps, we get circRNAs' and diseases' high-level representations which are informative to improve the prediction. The experimental results show that CDASOR provides an accurate prediction. Importing the characteristics of biological functions, CDASOR achieves impressive predictions in the de novo test. In addition, 6 of the top-10 predicted results are verified by the published literature in the case studies. AVAILABILITY The code of CDASOR is freely available at https://github.com/BioinformaticsCSU/CDASOR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chengqian Lu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Fang-Xiang Wu
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| |
Collapse
|
11
|
Lei X, Mudiyanselage TB, Zhang Y, Bian C, Lan W, Yu N, Pan Y. A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Brief Bioinform 2020; 22:6042241. [PMID: 33341893 DOI: 10.1093/bib/bbaa350] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
The studies on relationships between non-coding RNAs and diseases are widely carried out in recent years. A large number of experimental methods and technologies of producing biological data have also been developed. However, due to their high labor cost and production time, nowadays, calculation-based methods, especially machine learning and deep learning methods, have received a lot of attention and been used commonly to solve these problems. From a computational point of view, this survey mainly introduces three common non-coding RNAs, i.e. miRNAs, lncRNAs and circRNAs, and the related computational methods for predicting their association with diseases. First, the mainstream databases of above three non-coding RNAs are introduced in detail. Then, we present several methods for RNA similarity and disease similarity calculations. Later, we investigate ncRNA-disease prediction methods in details and classify these methods into five types: network propagating, recommend system, matrix completion, machine learning and deep learning. Furthermore, we provide a summary of the applications of these five types of computational methods in predicting the associations between diseases and miRNAs, lncRNAs and circRNAs, respectively. Finally, the advantages and limitations of various methods are identified, and future researches and challenges are also discussed.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | | | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Chen Bian
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Wei Lan
- School of Computer, Electronics and Information at Guangxi University, Nanning, China
| | - Ning Yu
- Department of Computing Sciences at the College at Brockport, State University of New York, Rochester, NY, USA
| | - Yi Pan
- Computer Science Department at Georgia State University, Atlanta, GA, USA
| |
Collapse
|
12
|
Fan C, Lei X, Pan Y. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion. Front Genet 2020; 11:540751. [PMID: 33193615 PMCID: PMC7525185 DOI: 10.3389/fgene.2020.540751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows that circular RNAs (circRNAs) have significant roles in human health and in the occurrence and development of diseases. Biological researchers have identified disease-related circRNAs that could be considered as potential biomarkers for clinical diagnosis, prognosis, and treatment. However, identification of circRNA–disease associations using traditional biological experiments is still expensive and time-consuming. In this study, we propose a novel method named MSFCNN for the task of circRNA–disease association prediction, involving two-layer convolutional neural networks on a feature matrix that fuses multiple similarity kernels and interaction features among circRNAs, miRNAs, and diseases. First, four circRNA similarity kernels and seven disease similarity kernels are constructed based on the biological or topological properties of circRNAs and diseases. Subsequently, the similarity kernel fusion method is used to integrate the similarity kernels into one circRNA similarity kernel and one disease similarity kernel, respectively. Then, a feature matrix for each circRNA–disease pair is constructed by integrating the fused circRNA similarity kernel and fused disease similarity kernel with interactions and features among circRNAs, miRNAs, and diseases. The features of circRNA–miRNA and disease–miRNA interactions are selected using principal component analysis. Finally, taking the constructed feature matrix as an input, we used two-layer convolutional neural networks to predict circRNA–disease association labels and mine potential novel associations. Five-fold cross validation shows that our proposed model outperforms conventional machine learning methods, including support vector machine, random forest, and multilayer perception approaches. Furthermore, case studies of predicted circRNAs for specific diseases and the top predicted circRNA–disease associations are analyzed. The results show that the MSFCNN model could be an effective tool for mining potential circRNA–disease associations.
Collapse
Affiliation(s)
- Chunyan Fan
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yi Pan
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
13
|
Protein-Related Circular RNAs in Human Pathologies. Cells 2020; 9:cells9081841. [PMID: 32781555 PMCID: PMC7463956 DOI: 10.3390/cells9081841] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a distinct family of RNAs derived from alternative splicing which play a crucial role in regulating gene expression by acting as microRNA (miRNA) and RNA binding protein (RBP) sponges. However, recent studies have also reported the multifunctional potential of these particles. Under different conditions, circRNAs not only regulate protein synthesis, destination, and degradation but can serve as protein scaffolds or recruiters and are also able to produce short peptides with active biological functions. circRNAs are under ongoing investigation because of their close association with the development of diseases. Some circRNAs are reportedly expressed in a tissue- and development stage-specific manner. Furthermore, due to other features of circRNAs, including their stability, conservation, and high abundance in bodily fluids, they are believed to be potential biomarkers for various diseases, including cancers. In this review, we focus on providing a summary of the current knowledge on circRNA-protein interactions. We present the properties and functions of circRNAs, the possible mechanisms of their translation abilities, and the emerging functions of circRNA-derived peptides in human pathologies.
Collapse
|
14
|
Inferring Candidate CircRNA-Disease Associations by Bi-random Walk Based on CircRNA Regulatory Similarity. LECTURE NOTES IN COMPUTER SCIENCE 2020. [PMCID: PMC7354774 DOI: 10.1007/978-3-030-53956-6_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Identification of associations between circular RNAs (circRNA) and diseases has become a hot topic, which is beneficial for researchers to understand the disease mechanism. However, traditional biological experiments are expensive and time-consuming. In this study, we proposed a novel method named BWHCDA, which applied bi-random walk algorithm on the heterogeneous network for predicting circRNA-disease associations. First, circRNA regulatory similarity is measured based on circRNA-miRNA interactions, and circRNA similarity is calculated by the average of circRNA regulatory similarity and Gaussian interaction profiles (GIP) kernel similarity for circRNAs. Similarly, disease similarity is the mean of disease semantic similarity and GIP kernel similarity for diseases. Then, the heterogeneous network is constructed by integrating circRNA network, disease network via circRNA-disease associations. Subsequently, the bi-random walk algorithm is implemented on the heterogeneous network to predict circRNA-disease associations. Finally, we utilize leave-one-out cross validation and 10-fold cross validation frameworks to evaluate the prediction performance of BWHCDA method and obtain AUC of 0.9334 and 0.8764 ± 0.0038, respectively. Moreover, the predicted hsa_circ_0000519-gastric cancer association is analyzed. Results show that BWHCDA could be an effective resource for clinical experimental guidance.
Collapse
|