1
|
Li J, Sun Y, Bi H. Exploring molecular mechanisms of diazinon toxicity in HT22 hippocampal neurons through integrated miRNA and mRNA profiling. Comput Biol Med 2024; 182:109091. [PMID: 39241324 DOI: 10.1016/j.compbiomed.2024.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Diazinon (DZN), a persistent organophosphate insecticide, has been associated with neurotoxic effects, particularly in the hippocampus. However, the specific molecular mechanisms of DZN-induced hippocampal toxicity remain unknown. In this study, we analyzed the mRNA and miRNA expression patterns of HT22 cells following exposure to DZN (125 μM), and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted subsequently. The integration of miRNA sequencing (miRNA-seq) and mRNA sequencing (mRNA-seq) data identified 33 differentially expressed miRNAs (DEMIs, 15 up-regulated and 18 down-regulated) and 271 differentially expressed mRNAs (DEMs, 69 up-regulated and 202 down-regulated) targeted by the DEMIs. Moreover, the 3 most central mRNAs (ITGAV, FN1, and EGFR) and 7 associated miRNAs (mmu-miR-700-5p, mmu-miR-26a-2-3p, mmu-miR-452-3p, mmu-miR-25-3p, mmu-miR-582-5p, mmu-miR-467a-5p, and mmu-miR-467b-5p) were screened and validated using quantitative real-time PCR. Furthermore, the GO analysis revealed that the identified DEMs were enriched in biological adhesion extracellular matrix, and growth factor binding, while the KEGG analysis suggested that the enriched DEMs were involved in ECM-receptor interaction, mTOR signaling pathway, MAPK signaling pathway, and AMPK signaling pathway. Our results may aid in elucidating the underlying mechanisms associated with DZN-induced hippocampal toxicity and provide valuable insights into the pathogenesis of neurotoxicity triggered by other organophosphorus pesticides.
Collapse
Affiliation(s)
- Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou, 221000, China
| | - Yan Sun
- Department of Biostatistics, College of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lin Gui District, Guilin, 541001, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou, 221000, China.
| |
Collapse
|
2
|
Sarfraz M, Abida, Eltaib L, Asdaq SMB, Guetat A, Alzahrani AK, Alanazi SS, Aaghaz S, Singla N, Imran M. Overcoming chemoresistance and radio resistance in prostate cancer: The emergent role of non-coding RNAs. Pathol Res Pract 2024; 255:155179. [PMID: 38320439 DOI: 10.1016/j.prp.2024.155179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Prostate cancer (PCa) continues to be a major health concern worldwide, with its resistance to chemotherapy and radiation therapy presenting major hurdles in successful treatment. While patients with localized prostate cancer generally have a good survival rate, those with metastatic prostate cancer often face a grim prognosis, even with aggressive treatments using various methods. The high mortality rate in severe cases is largely due to the lack of treatment options that can offer lasting results, especially considering the significant genetic diversity found in tumors at the genomic level. This comprehensive review examines the intricate molecular mechanisms governing resistance in PCa, emphasising the pivotal contributions of non-coding RNAs (ncRNAs). We delve into the diverse roles of microRNAs, long ncRNAs, and other non-coding elements as critical regulators of key cellular processes involved in CR & RR. The review emphasizes the diagnostic potential of ncRNAs as predictive biomarkers for treatment response, offering insights into patient stratification and personalized therapeutic approaches. Additionally, we explore the therapeutic implications of targeting ncRNAs to overcome CR & RR, highlighting innovative strategies to restore treatment sensitivity. By synthesizing current knowledge, this review not only provides a comprehension of the chemical basis of resistance in PCa but also identifies gaps in knowledge, paving the way for future research directions. Ultimately, this exploration of ncRNA perspectives offers a roadmap for advancing precision medicine in PCa, potentially transforming therapeutic paradigms and improving outcomes for patients facing the challenges of treatment resistance.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | | | - Arbi Guetat
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar 91431, Saudi Arabia
| | | | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
3
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, AlGhamdi AS, Alkinani KB, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Sekar M, Abida. The emerging role of non-coding RNAs in the Wnt/β-catenin signaling pathway in Prostate Cancer. Pathol Res Pract 2024; 254:155134. [PMID: 38277746 DOI: 10.1016/j.prp.2024.155134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/β-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/β-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/β-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/β-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/β-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/β-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/β-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abeer S AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Khadijah B Alkinani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia; Department of Public Health, Faculty of Health Sciences, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
4
|
Xiao S, Lou W. Integrated analysis reveals a potential cuproptosis-related ceRNA axis SNHG17/miR-29a-3p/GCSH in prostate adenocarcinoma. Heliyon 2023; 9:e21506. [PMID: 38027603 PMCID: PMC10651496 DOI: 10.1016/j.heliyon.2023.e21506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Cuproptosis is a novel form of programmed cell death. The role and mechanism of cuproptosis-related genes in prostate adenocarcinoma have not been fully understood. In this study, a series of bioinformatic analyses were performed. Consequently, glycine cleavage system protein H with high expression and unfavorable prognosis was regarded as the most potential cuproptosis-related gene in prostate adenocarcinoma. Moreover, glycine cleavage system protein H might be a promising indicator for predicting leuprolide sensitivity in prostate adenocarcinoma and three potential drugs targeting glycine cleavage system protein H were identified. Enrichment analysis revealed that glycine cleavage system protein H-correlated genes were significantly enriched in tricarboxylic acid cycle-related pathways. Subsequently, small nucleolar RNA host gene 17/miR-29a-3p axis was found to partially account for overexpression of glycine cleavage system protein H in prostate adenocarcinoma. Collectively, the current study elucidated a potential cuproptosis-related competing endogenous RNA axis small nucleolar RNA host gene 17/miR-29a-3p/glycine cleavage system protein H in prostate adenocarcinoma.
Collapse
Affiliation(s)
- Shuyuan Xiao
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Bu T, Li L, Tian J. Unlocking the role of non-coding RNAs in prostate cancer progression: exploring the interplay with the Wnt signaling pathway. Front Pharmacol 2023; 14:1269233. [PMID: 37829301 PMCID: PMC10565042 DOI: 10.3389/fphar.2023.1269233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in males, exhibiting a wide spectrum of clinical manifestations that pose challenges in its diagnosis and treatment. The Wnt signaling pathway, a conserved and complex pathway, is crucial for embryonic development, tissue homeostasis, and various physiological processes. Apart from the classical Wnt/β-catenin signaling pathway, there exist multiple non-classical Wnt signaling pathways, including the Wnt/PCP and Wnt/Ca2+ pathways. Non-coding RNAs (ncRNAs) are involved in the occurrence and development of PCa and the response to PCa treatment. ncRNAs are known to execute diverse regulatory roles in cellular processes, despite their inability to encode proteins. Among them, microRNAs, long non-coding RNAs, and circular RNAs play key roles in the regulation of the Wnt signaling pathway in PCa. Aberrant expression of these ncRNAs and dysregulation of the Wnt signaling pathway are one of the causes of cell proliferation, apoptosis, invasion, migration, and angiogenesis in PCa. Moreover, these ncRNAs affect the characteristics of PCa cells and hold promise as diagnostic and prognostic biomarkers. Herein, we summarize the role of ncRNAs in the regulation of the Wnt signaling pathway during the development of PCa. Additionally, we present an overview of the current progress in research on the correlation between these molecules and clinical features of the disease to provide novel insights and strategies for the treatment of PCa.
Collapse
Affiliation(s)
| | | | - Jiyu Tian
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Gao K, Li X, Ni J, Wu B, Guo J, Zhang R, Wu G. Non-coding RNAs in enzalutamide resistance of castration-resistant prostate cancer. Cancer Lett 2023; 566:216247. [PMID: 37263338 DOI: 10.1016/j.canlet.2023.216247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Enzalutamide (Enz) is a next-generation androgen receptor (AR) antagonist used to treat castration-resistant prostate cancer (CRPC). Unfortunately, the relapsing nature of CRPC results in the development of Enz resistance in many patients. Non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins, which include microRNAs (miRNA), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs with known and unknown functions. Recently, dysregulation of ncRNAs in CRPC, particularly their regulatory function in drug resistance, has attracted more and more attention. Herein, we introduce the roles of dysregulation of different ncRNAs subclasses in the development of CRPC progression and Enz resistance. Recently determined mechanisms of Enz resistance are discussed, focusing mainly on the role of AR-splice variant-7 (AR-V7), mutations, circRNAs and lncRNAs that act as miRNA sponges. Also, the contributions of epithelial-mesenchymal transition and glucose metabolism to Enz resistance are discussed. We summarize the different mechanisms of miRNAs, lncRNAs, and circRNAs in the progression of CRPC and Enz resistance, and highlight the prospect of future therapeutic strategies against Enz resistance.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/therapeutic use
- RNA, Circular/genetics
- Drug Resistance, Neoplasm/genetics
- Neoplasm Recurrence, Local
- Nitriles
- Androgen Receptor Antagonists/therapeutic use
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Cell Line, Tumor
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaoshun Li
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jianxin Ni
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Bin Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jiaheng Guo
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China; The State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| |
Collapse
|
7
|
Taheri M, Badrlou E, Hussen BM, Kashi AH, Ghafouri-Fard S, Baniahmad A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front Oncol 2023; 13:1123101. [PMID: 37025585 PMCID: PMC10070735 DOI: 10.3389/fonc.2023.1123101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are regulatory transcripts with essential roles in the pathogenesis of almost all types of cancers, including prostate cancer. They can act as either oncogenic lncRNAs or tumor suppressor ones in prostate cancer. Small nucleolar RNA host genes are among the mostly assessed oncogenic lncRNAs in this cancer. PCA3 is an example of oncogenic lncRNAs that has been approved as a diagnostic marker in prostate cancer. A number of well-known oncogenic lncRNAs in other cancers such as DANCR, MALAT1, CCAT1, PVT1, TUG1 and NEAT1 have also been shown to act as oncogenes in prostate cancer. On the other hand, LINC00893, LINC01679, MIR22HG, RP1-59D14.5, MAGI2-AS3, NXTAR, FGF14-AS2 and ADAMTS9-AS1 are among lncRNAs that act as tumor suppressors in prostate cancer. LncRNAs can contribute to the pathogenesis of prostate cancer via modulation of androgen receptor (AR) signaling, ubiquitin-proteasome degradation process of AR or other important signaling pathways. The current review summarizes the role of lncRNAs in the evolution of prostate cancer with an especial focus on their importance in design of novel biomarker panels and therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq
| | - Amir Hossein Kashi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
8
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG, Zhang R. VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization. Int J Oncol 2023; 62:34. [PMID: 36734275 PMCID: PMC9911078 DOI: 10.3892/ijo.2023.5482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
VIM‑AS1, a cancer‑specific long non‑coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM‑AS1 in the proliferation and resistance to anti‑androgen therapy of LNCaP and C4‑2 prostate cancer cells remains to be determined. In the current study, gain‑and‑loss experiments were used to investigate the effects of VIM‑AS on the proliferation and anti‑androgen therapy of LNCaP and C4‑2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM‑AS1 driving prostate progression. It was demonstrated that VIM‑AS1 was upregulated in C4‑2 cells, an established castration‑resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone‑sensitive prostate cancer cell line. The present study further demonstrated that VIM‑AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM‑AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM‑AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4‑2 cells in vitro and in vivo. Mechanistically, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM‑AS1, and VIM‑AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM‑AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA‑protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM‑AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM‑AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM‑AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Department of Andrology, Reproduction Center, Northwest Women's and Children's Hospital, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710004, P.R. China,Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Jing-Liang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| |
Collapse
|
9
|
Zhang G, Fu L, Wang Y, Liu B, Ma S, Ma H, Zhang H, Zhang F, Yang K, Cai H. Integrative pan-cancer analysis indicates the prognostic importance of long noncoding RNA SNHG17 in human cancers. Pathol Res Pract 2022; 238:154140. [PMID: 36167008 DOI: 10.1016/j.prp.2022.154140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cancer is one of the most widespread causes of death today. Early diagnosis can dramatically reduce cancer-related mortality. Studies have shown that the lncRNA Small Nucleolar RNA Host Gene 17 (SNHG17) is aberrantly expressed in various types of solid tumors. Nevertheless, its prognostic value remains to be elucidated. The main objective of this meta-analysis was to elucidate whether SNHG17 can be considered as a potential prognostic biomarker for a variety of cancers. METHODS Correlational studies were screened from Cochrane, Embase, PubMed, and Web of Science. Hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were pooled, and the role of SNHG17 in cancer was analyzed. The Cancer Genome Atlas (TCGA) database was employed to verify the results. RESULTS Seventeen original papers including 1451 patients were included in the meta-analysis. SNHG17 expression was upregulated in various cancers. Overexpression of SNHG17 was significantly correlated with worse overall survival (OS) (HR = 1.92, 95% CI 1.55-2.37, P < 0.001) and relapse-free survival (RFS) (HR = 1.87, 95% CI 1.06-3.30, P = 0.030). Furthermore, overexpression of SNHG17 was predictive of earlier lymph node metastasis (LNM) (OR = 2.94, 95% CI 2.29-3.78, P < 0.001), more advanced tumor-node-metastases (TNM) stage (OR = 3.56, 95% CI 2.22-5.68, P < 0.001), larger tumor size (OR = 2.18, 95% CI 1.65-2.88, P < 0.001), worse differentiation grade (OR = 1.69, 95% CI 1.26-2.25, P < 0.001), and earlier distant metastasis (DM) (OR = 1.63, 95% CI 1.03-2.56, P = 0.033) in human cancers. Moreover, further inquiry based on TCGA dataset validated that SNHG17 was high expression in various tumors and foresaw unfavorable clinical prognosis. CONCLUSIONS Overexpression of SNHG17 correlates with poor prognosis and advanced clinicopathological features in cancer patients and may be a potential prognostic indicator and a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Guangming Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China; Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liangyin Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China; Gansu Provincial Hospital, Lanzhou 730000, China
| | | | - Bin Liu
- Gansu Provincial Hospital, Lanzhou 730000, China
| | - Shixun Ma
- Gansu Provincial Hospital, Lanzhou 730000, China
| | - Haizhong Ma
- Gansu Provincial Hospital, Lanzhou 730000, China
| | - Helin Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Fan Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Cai
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China; Gansu Provincial Hospital, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
10
|
Zhang N, Sun Y, Wang T, Xu X, Cao M. Enabling factor for cancer hallmark acquisition: Small nucleolar RNA host gene 17. Front Oncol 2022; 12:974939. [PMID: 36185210 PMCID: PMC9515549 DOI: 10.3389/fonc.2022.974939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The role of long non-coding RNA (lncRNA) in human tumors has gradually received increasing attention in recent years. Particularly, the different functions of lncRNAs in different subcellular localizations have been widely investigated. The upregulation of lncRNA small nucleolar RNA host gene 17 (SNHG17) has been observed in various human tumors. Growing evidence has proved that SNHG17 plays a tumor-promoting role in tumorigenesis and development. This paper describes the molecular mechanisms by which SNHG17 contributes to tumor formation and development. The different functions of SNHG17 in various subcellular localizations are also emphasized: its function in the cytoplasm as a competing endogenous RNA (ceRNA), its action in the nucleus as a transcriptional coactivator, and its function through the polycomb repressive complex 2 (PRC2)-dependent epigenetic modifications that regulate transcriptional processes. Finally, the correlation between SNHG17 and human tumors is summarized. Its potential as a novel prognostic and diagnostic biomarker for cancer is explored especially.
Collapse
Affiliation(s)
- Ningzhi Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanyuan Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tuo Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyuan Xu
- Medical Affairs Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengru Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Mengru Cao,
| |
Collapse
|
11
|
Integrative Analysis and Experimental Validation Indicated That SNHG17 Is a Prognostic Marker in Prostate Cancer and a Modulator of the Tumor Microenvironment via a Competitive Endogenous RNA Regulatory Network. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1747604. [PMID: 35864871 PMCID: PMC9296331 DOI: 10.1155/2022/1747604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022]
Abstract
The incidence of prostate cancer (PC) is growing rapidly worldwide, and studies uncovering the molecular mechanisms driving the progression and modulating the immune infiltration and antitumor immunity of PC are urgently needed. The long noncoding RNA SNHG family has been recognized as a prognostic marker in cancers and contributes to the progression of multiple cancers, including PC. In this study, we aimed to clarify the prognostic values and underlying mechanisms of SNHGs in promoting the progression and modulating the tumor microenvironment of PC through data mining based on The Cancer Genome Atlas (TCGA) database. We identified that within the SNHG family, SNHG17 was most correlated with the overall survival of PC patients and could act as an independent predictor. Moreover, we constructed a competitive endogenous RNA (ceRNA) network by which SNHG17 promotes progression and potentially inhibits the immune infiltration and immune response of prostate cancer. By interacting with miR-23a-3p/23b-3p/23c, SNHG17 upregulates the expression of UBE2M and OTUB1, which have been demonstrated to play critical roles in the tumorigenesis of human cancers, more importantly promoting cancer cell immunosuppression and resistance to cytotoxic stimulation. Finally, we examined the correlation between SNHG17 expression and the clinical progression of PC patients based on our cohort of 52 PC patients. We also verified the SNHG17/miR-23a/OTUB1 axis in RV-1 and PC-3 cells by dual luciferase and RIP assays, and we further identified that SNHG17 promoted cellular invasive capacity by modulating OTUB1. In summary, the current study conducted a ceRNA-based SNHG17-UBE2M/OTUB1 axis and indicated that SNHG17 might be a novel prognostic factor associated with the progression, immunosuppression, and cytotoxic resistance of PC.
Collapse
|
12
|
Ma L, Gao J, Zhang N, Wang J, Xu T, Lei T, Zou X, Wei C, Wang Z. Long noncoding RNA SNHG17: a novel molecule in human cancers. Cancer Cell Int 2022; 22:104. [PMID: 35248073 PMCID: PMC8897953 DOI: 10.1186/s12935-022-02529-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/21/2022] [Indexed: 01/13/2023] Open
Abstract
AbstractMany studies in recent years have found that dysregulation of long non-coding RNAs (lncRNAs) can contribute to disease. Small nucleolar RNA host gene 17 (SNHG17) is a novel cancer-related lncRNA of the SNHG family which is highly expressed in various tumors and may exert oncogenic functions. Several studies have demonstrated that SNHG17 is closely related to the proliferation, migration, invasion, apoptosis, and chemical drug resistance of tumor cells, and clinical studies have found an association between high SNHG17 expression and poor prognosis. In this review, we summarize relevant studies investigating SNHG17, focusing on its biological function as well as its potential value for clinical applications.
Collapse
|
13
|
Ranjbar R, Ghasemian M, Maniati M, Hossein Khatami S, Jamali N, Taheri-Anganeh M. Gastrointestinal disorder biomarkers. Clin Chim Acta 2022; 530:13-26. [DOI: 10.1016/j.cca.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/19/2023]
|
14
|
Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities? Cancers (Basel) 2022; 14:cancers14030755. [PMID: 35159022 PMCID: PMC8834032 DOI: 10.3390/cancers14030755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Non-coding RNAs are a type of genetic material that doesn’t make protein, but performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs may provide alterative treatment options and potentially overcome drug resistance. Major types of non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific studies have shown that these form a major part of the human genome, and play key roles in altering gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling response to DNA damage. In this review, we explore how different types of non-coding RNA interact to control cell DNA damage responses, and how this knowledge may be used to design better prostate cancer treatments and tests. Abstract It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.
Collapse
|
15
|
Hu CY, Wu KY, Lin TY, Chen CC. The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance. Int J Mol Sci 2021; 23:ijms23010392. [PMID: 35008817 PMCID: PMC8745162 DOI: 10.3390/ijms23010392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Kuan-Yu Wu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tsung-Yen Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Division of Urology, Department of Surgery, Dou-Liou Branch, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
16
|
Zhao A, Zhao Z, Liu W, Cui X, Wang N, Wang Y, Wang Y, Sun L, Xue H, Wu L, Cui S, Yang Y, Bai R. Carcinoma-associated fibroblasts promote the proliferation and metastasis of osteosarcoma by transferring exosomal LncRNA SNHG17. Am J Transl Res 2021; 13:10094-10111. [PMID: 34650683 PMCID: PMC8507050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/04/2021] [Indexed: 06/13/2023]
Abstract
Cancer-associated fibroblasts (CAFs) serve as a predominant regulator in the tumor microenvironment. However, the crosstalk between CAFs and OS cells remains mostly unclear. Recent studies explored that long non-coding RNA (LncRNAs) involved in regulating osteosarcoma (OS) formation and development, but their functions in CAFs are unknown. Here, we first investigated the SNHG17 was upregulated in OS tissues and correlated with the poor prognosis through the integrating clinical data. We then evaluated the function of SNHG17 in vitro using the stable SNHG17-depleted OS cells. HOS cells with SNHG17 knocked down were performed to generate the OS xenograft model. Through immunohistochemistry assay and TUNEL apoptosis assay, the role of SNHG17 on OS development was assessed in vivo. We then examined the SNHG17 expression in exosomes derived from CAFs, normal fibroblasts (NFs), and tumor tissues from the OS clinical samples. The interaction among SNHG17, miR-2861, and MMP2 was predicted by bioinformatics analysis and identified by RIP and luciferase assays. The cell proliferation, migration, and apoptosis of SJSA-1 and HOS cells co-cultured with CAFs-derived exosomes were assessed by CCK-8 and colony formation assays. We found that SNHG17 was upregulated in the tumor tissues and presented a pro-tumorigenic effect on OS both in vitro and in vivo. It also was an essential exosomal cargo of CAFs and could affect OS cell proliferation and migration in vitro. CAFs-released exosomal SNHG17 acted as an essential molecular sponge for miR-2861 in OS cells. Moreover, MMP2 was a direct target of miR-2861 and was regulated by SNHG17. Overall, our findings identified that SNHG17 was an essential exosomal cargo of OS-related CAFs that contributes to proliferation and metastasis of OS, supporting the therapeutic potency of targeting the crosstalk between cancer cells and CAFs.
Collapse
Affiliation(s)
- Aiqing Zhao
- Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Wanlin Liu
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Xiaolong Cui
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Na Wang
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Yong Wang
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Yuxin Wang
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Liang Sun
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Huiqin Xue
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Lishuan Wu
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Shuxia Cui
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Yun Yang
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| | - Rui Bai
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia, China
| |
Collapse
|
17
|
Cui Y, Zhang S, Miao C, Liang C, Chen X, Yan T, Bu H, Dong H, Li J, Li J, Wang Z, Liu B. Identification of autophagy-related long non-coding RNA prognostic and immune signature for clear cell renal cell carcinoma. Transl Androl Urol 2021; 10:3317-3331. [PMID: 34532256 PMCID: PMC8421821 DOI: 10.21037/tau-21-278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Studies over the past decade have shown that long non-coding RNAs (lncRNAs) play an essential role in the tumorigenesis and progression of kidney renal clear cell carcinoma (KIRC). Meanwhile, autophagy has been demonstrated to regulate KIRC pathogenesis and targeting therapy resistance. However, the prognostic value of autophagy-related lncRNAs in KIRC patients has not been reported before. METHODS In this study, we obtained transcriptome data of 611 KIRC cases from the TCGA database and 258 autophagy-related mRNAs from the HADb database to identify autophagy-related lncRNAs by co-expression network. A prognostic model was then established basing on these autophagy-related lncRNAs, dividing patients into high-risk and low-risk groups. Survival analysis, clinical variables dependent receiver operating characteristic (ROC) analyses, univariate/multivariate Cox analyses, and clinical correlation analysis were performed based on risk signature with R language. Gene set enrichment analysis (GSEA) was then performed to investigate the potential mechanism of the risk signature promoting KIRC progression with GSEA software. CIBERSORT algorithm was performed to assess the impact of these lncRNAs on the infiltration of immune cells. RESULTS A total of 17 lncRNAs were screened out and all these lncRNAs were found significantly related to KIRC patients' overall survival in subsequent survival analyses. Besides, the overall survival time in the high-risk group was much poorer than in the low-risk group. The ROC analysis revealed that the prognostic value of risk signature was better than age, gender, grade, and N stage. Univariate/multivariate analyses suggested that the risk signature was an independent predictive factor for KIRC patients. Immune and autophagy related pathways were dramatically enriched in high-risk and low-risk groups, respectively, and lncRNAs related immune cells were identified by CIBERSORT. CONCLUSIONS In summary, our identified 17 autophagy-related lncRNAs had prognostic value for KIRC patients which may function in immunomodulation.
Collapse
Affiliation(s)
- Yankang Cui
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shaobo Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hengtao Bu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junchen Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Shen M, Li X, Qian B, Wang Q, Lin S, Wu W, Zhu S, Zhu R, Zhao S. Crucial Roles of microRNA-Mediated Autophagy in Urologic Malignancies. Int J Biol Sci 2021; 17:3356-3368. [PMID: 34512152 PMCID: PMC8416737 DOI: 10.7150/ijbs.61175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Urologic oncologies are major public health problems worldwide. Both microRNA and autophagy, separately or concurrently, are involved in a variety of the cellular and molecular processes of multiple cancers, including urologic malignancies. In this review, we have summarized the related studies and found that microRNA-mediated autophagy acted as carcinogenic factors or suppressors in prostate cancer, kidney cancer, and bladder cancer. MiRNAs, targeted genes, and the different signaling pathways constitute a complex network that orchestrates autophagy regulation, militating the oncogenic and tumor-suppressive effects in urologic malignancies. Aberrant expression of miRNAs may induce the dysregulation of the autophagy process, resulting in tumorigenesis, progression, and resistance to anticancer therapies. Targeting specific miRNAs for autophagy modulation may present as reliable diagnostic and prognostic biomarkers or promising therapeutic strategies for urologic oncologies.
Collapse
Affiliation(s)
- Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Wang
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Shanan Lin
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Wenhao Wu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Shuai Zhu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Rui Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| |
Collapse
|
19
|
Ding L, Wang R, Shen D, Cheng S, Wang H, Lu Z, Zheng Q, Wang L, Xia L, Li G. Role of noncoding RNA in drug resistance of prostate cancer. Cell Death Dis 2021; 12:590. [PMID: 34103477 PMCID: PMC8187453 DOI: 10.1038/s41419-021-03854-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the most prevalent forms of cancer around the world. Androgen-deprivation treatment and chemotherapy are the curative approaches used to suppress prostate cancer progression. However, drug resistance is extensively and hard to overcome even though remarkable progress has been made in recent decades. Noncoding RNAs, such as miRNAs, lncRNAs, and circRNAs, are a group of cellular RNAs which participate in various cellular processes and diseases. Recently, accumulating evidence has highlighted the vital role of non-coding RNA in the development of drug resistance in prostate cancer. In this review, we summarize the important roles of these three classes of noncoding RNA in drug resistance and the potential therapeutic applications in this disease.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Liu Y, Li Q, Tang D, Li M, Zhao P, Yang W, Shu L, Wang J, He Z, Li Y, Wang F. SNHG17 promotes the proliferation and migration of colorectal adenocarcinoma cells by modulating CXCL12-mediated angiogenesis. Cancer Cell Int 2020; 20:566. [PMID: 33292246 PMCID: PMC7690009 DOI: 10.1186/s12935-020-01621-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal adenocarcinoma (CRA) is one of the leading causes of cancer-related deaths in the world. Long non-coding RNAs (lncRNAs) have been implicated to be effective regulators in the disease course of human cancers, including CRA. Small nucleolar RNA host gene 17 (SNHG17) belongs to lncRNAs, and it has been reported in breast cancer and gastric cancer. However, the function of SNHG17 and its mechanism in CRA progression remain largely unknown. In this study, we attended to shedding some light on the role of SNHG17 in CRA. Methods RT-qPCR was used to assess SNHG17 expression in CRA cells. CCK-8 assay, colony formation and transwell assay were carried out to detect the regulatory effect of SNHG17 silencing on CRA cell proliferation and migration. The angiogenesis of SNHG7-downregulated CRA cells was analyzed by tube formation assay. Mechanism experiments were conducted to identify the interaction between miR-23a-3p and SNHG17 or C-X-C motif chemokine ligand 12 (CXCL12). Results SNHG17 possessed with high expression in CRA cells. Knockdown of SNHG17 caused the inhibition on CRA cell proliferation and migration. SNHG17 promoted CRA cell proliferation and migration by sponging miR-23a-3p to upregulate CXCL12. Conclusion SNHG17 promotes the proliferation and migration of CRA cells by inhibiting miR-23a-3p to modulate CXCL12-mediated angiogenesis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Science and Education, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China. .,National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Qinshan Li
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Dongxin Tang
- Department of Science and Education, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Mengxing Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Wenxiu Yang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Liping Shu
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Zhixu He
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, Guizhou, China
| | - Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China.
| | - Feiqing Wang
- Department of Science and Education, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
21
|
Meng C, Zhou JQ, Liao YS. Autophagy-related long non-coding RNA signature for ovarian cancer. J Int Med Res 2020; 48:300060520970761. [PMID: 33179541 PMCID: PMC7673061 DOI: 10.1177/0300060520970761] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Ovarian cancer (OC) affects nearly 22,000 women annually in the United States and ranks fifth in cancer deaths, largely because of being diagnosed at an advanced stage. Autophagy is the cellular process of self-degrading damaged or degenerate proteins and organelles. Long non-coding RNAs (lncRNAs) are a group of RNA molecules whose transcripts are greater than 200 nt but are not translated into proteins. However, just a small number of autophagy-related lncRNAs have been explored in depth. METHODS We used RNA sequencing data from The Cancer Genome Atlas (TCGA) and autophagy datasets to identify dysfunctional autophagy-related lncRNAs and provide potential useful biomarkers for OC diagnosis and prognosis. RESULTS Seventeen differentially expressed lncRNAs (AC010186.3, AC006001.2, LBX2-AS1, SNHG17, AC011445.1, AC083880.1, MIR193BHG, AC025259.3, HCG14, AC007114.1, AC108673.2, USP30-AS1, AC010336.5, LINC01132, AC006333.2, LINC00665 and AC027348.1) were selected as independent prognostic factors for OC patients. Functional annotation of the data was performed through gene set enrichment analysis (GSEA). The results suggested that the high-risk group was mainly enriched in specific tumor-related and metabolism pathways. CONCLUSION Based on the online databases, we identified novel autophagy-related lncRNAs for the prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Chan Meng
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie-Qiong Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | |
Collapse
|
22
|
Li W, Zheng Y, Mao B, Wang F, Zhong Y, Cheng D. SNHG17 upregulates WLS expression to accelerate lung adenocarcinoma progression by sponging miR-485-5p. Biochem Biophys Res Commun 2020; 533:1435-1441. [PMID: 33109341 DOI: 10.1016/j.bbrc.2020.09.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been uncovered to be essential regulators in the biological processes of human cancers, including lung adenocarcinoma (LUAD). Recently, small nucleolar RNA host gene 17 (SNHG17) has been identified as one novel oncogenic lncRNA in gastric cancer. However, it remains unclear whether SNHG7 exert functions in LUAD progression. METHODS The expression levels of SNHG17, miR-485-5p and Wnt ligand secretion mediator (WLS) in LUAD cells was evaluated by RT-qPCR. The effect of SNHG7 silencing on LUAD cell proliferation was assessed by colony formation and EdU assays. The apoptosis of LUAD cells was measured by flow cytometry analysis. Transwell assays were applied to detect cell migration and invasion. The relationship between SNHG17 and miR-485-5p was validated by RIP, RNA pull down and luciferase reporter assays. RESULTS SNHG17 and WLS were up-regulated in LUAD cell lines. Down-regulation of SNHG17 curbed LUAD cell proliferation, migration and invasion but facilitated apoptosis. SNHG17 acted as miR-485-5p sponge to upregulate WLS expression. CONCLUSION SNHG17 triggers the progression of LUAD via sponging miR-485-5p to upregulate WLS expression.
Collapse
Affiliation(s)
- Wen Li
- Department of Respiration, West China Hospital, Sichuan University, Chengdu, 610000, China; Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Yuqiong Zheng
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Bing Mao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yunqing Zhong
- Department of Pulmonary Disease, Guangxi International Zhuang Medicine Hospital, Nanning, 530000, China.
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
23
|
Zhou M, Wu Y, Li H, Zha X. MicroRNA-144: A novel biological marker and potential therapeutic target in human solid cancers. J Cancer 2020; 11:6716-6726. [PMID: 33046994 PMCID: PMC7545670 DOI: 10.7150/jca.46293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. It has been reported that microRNA-144 (miR-144) is highly conserved and can combine complementarily with the 3'-UTRs of target gene mRNAs to inhibit mRNA translation or promote targeted mRNA degradation. MiR-144 is abnormally expressed and has been identified as a tumor suppressor in many types of solid tumors. Increasing evidence supports a crucial role for miR-144 in modulating physiopathologic processes, such as proliferation, apoptosis, invasion, migration and angiogenesis in different tumor cells. Apart from these functions, miR-144 can also affect drug sensitivity, cancer treatment and patient prognosis. In this review, we summarize the biological functions of miR-144, its direct targets and the important signal pathways through which it acts in relation to various tumors. We also discuss the role of miR-144 in tumor biology and its clinical significance in detail and offer novel insights into molecular targeting therapy for human cancers.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuncui Wu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|