1
|
Zhang C, Li Y, Dong Y, Chen W, Yu C. Prediction of miRNA-disease associations based on PCA and cascade forest. BMC Bioinformatics 2024; 25:386. [PMID: 39701957 DOI: 10.1186/s12859-024-05999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND As a key non-coding RNA molecule, miRNA profoundly affects gene expression regulation and connects to the pathological processes of several kinds of human diseases. However, conventional experimental methods for validating miRNA-disease associations are laborious. Consequently, the development of efficient and reliable computational prediction models is crucial for the identification and validation of these associations. RESULTS In this research, we developed the PCACFMDA method to predict the potential associations between miRNAs and diseases. To construct a multidimensional feature matrix, we consider the fusion similarities of miRNA and disease and miRNA-disease pairs. We then use principal component analysis(PCA) to reduce data complexity and extract low-dimensional features. Subsequently, a tuned cascade forest is used to mine the features and output prediction scores deeply. The results of the 5-fold cross-validation using the HMDD v2.0 database indicate that the PCACFMDA algorithm achieved an AUC of 98.56%. Additionally, we perform case studies on breast, esophageal and lung neoplasms. The findings revealed that the top 50 miRNAs most strongly linked to each disease have been validated. CONCLUSIONS Based on PCA and optimized cascade forests, we propose the PCACFMDA model for predicting undiscovered miRNA-disease associations. The experimental results demonstrate superior prediction performance and commendable stability. Consequently, the PCACFMDA is a potent instrument for in-depth exploration of miRNA-disease associations.
Collapse
Affiliation(s)
- Chuanlei Zhang
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yubo Li
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yinglun Dong
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wei Chen
- Computer Science, China University of Mining and Technology, Xuzhou, 221116, China
| | - Changqing Yu
- Electronic Information, Xijing University, Xi'an, 710123, China.
| |
Collapse
|
2
|
Ouyang D, Liang Y, Wang J, Li L, Ai N, Feng J, Lu S, Liao S, Liu X, Xie S. HGCLAMIR: Hypergraph contrastive learning with attention mechanism and integrated multi-view representation for predicting miRNA-disease associations. PLoS Comput Biol 2024; 20:e1011927. [PMID: 38652712 PMCID: PMC11037542 DOI: 10.1371/journal.pcbi.1011927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
Existing studies have shown that the abnormal expression of microRNAs (miRNAs) usually leads to the occurrence and development of human diseases. Identifying disease-related miRNAs contributes to studying the pathogenesis of diseases at the molecular level. As traditional biological experiments are time-consuming and expensive, computational methods have been used as an effective complement to infer the potential associations between miRNAs and diseases. However, most of the existing computational methods still face three main challenges: (i) learning of high-order relations; (ii) insufficient representation learning ability; (iii) importance learning and integration of multi-view embedding representation. To this end, we developed a HyperGraph Contrastive Learning with view-aware Attention Mechanism and Integrated multi-view Representation (HGCLAMIR) model to discover potential miRNA-disease associations. First, hypergraph convolutional network (HGCN) was utilized to capture high-order complex relations from hypergraphs related to miRNAs and diseases. Then, we combined HGCN with contrastive learning to improve and enhance the embedded representation learning ability of HGCN. Moreover, we introduced view-aware attention mechanism to adaptively weight the embedded representations of different views, thereby obtaining the importance of multi-view latent representations. Next, we innovatively proposed integrated representation learning to integrate the embedded representation information of multiple views for obtaining more reasonable embedding information. Finally, the integrated representation information was fed into a neural network-based matrix completion method to perform miRNA-disease association prediction. Experimental results on the cross-validation set and independent test set indicated that HGCLAMIR can achieve better prediction performance than other baseline models. Furthermore, the results of case studies and enrichment analysis further demonstrated the accuracy of HGCLAMIR and unconfirmed potential associations had biological significance.
Collapse
Affiliation(s)
- Dong Ouyang
- Peng Cheng Laboratory, Shenzhen, China
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, China
- Pazhou Laboratory (Huangpu), Guangzhou, China
| | - Jinfeng Wang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Le Li
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Ning Ai
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Junning Feng
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shanghui Lu
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shuilin Liao
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Xiaoying Liu
- Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, China
| | - Shengli Xie
- Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing, Guangzhou, China
| |
Collapse
|
3
|
Li L, Gao Z, Zheng CH, Qi R, Wang YT, Ni JC. Predicting miRNA-Disease Association Based on Improved Graph Regression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3604-3613. [PMID: 34757912 DOI: 10.1109/tcbb.2021.3127017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, as a growing number of associations between microRNAs (miRNAs) and diseases are discovered, researchers gradually realize that miRNAs are closely related to several complicated biological processes and human diseases. Hence, it is especially important to construct availably models to infer associations between miRNAs and diseases. In this study, we presented Improved Graph Regression for miRNA-Disease Association Prediction (IGRMDA) to observe potential relationship between miRNAs and diseases. In order to reduce the inherent noise existing in the acquired biological datasets, we utilized matrix decomposition algorithm to process miRNA functional similarity and disease semantic similarity and then combining them with existing similarity information to obtain final miRNA similarity data and disease similarity data. Then, we applied miRNA-disease association data, miRNA similarity data and disease similarity data to form corresponding latent spaces. Furthermore, we performed improved graph regression algorithm in latent spaces, which included miRNA-disease association space, miRNA similarity space and disease similarity space. Non-negative matrix factorization and partial least squares were used in the graph regression process to obtain important related attributes. The cross validation experiments and case studies were also implemented to prove the effectiveness of IGRMDA, which showed that IGRMDA could predict potential associations between miRNAs and diseases.
Collapse
|
4
|
Ni J, Li L, Wang Y, Ji C, Zheng C. MDSCMF: Matrix Decomposition and Similarity-Constrained Matrix Factorization for miRNA-Disease Association Prediction. Genes (Basel) 2022; 13:1021. [PMID: 35741782 PMCID: PMC9223216 DOI: 10.3390/genes13061021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are related to a number of complicated biological processes, and numerous studies have demonstrated that miRNAs are closely associated with many human diseases. In this study, we present a matrix decomposition and similarity-constrained matrix factorization (MDSCMF) to predict potential miRNA-disease associations. First of all, we utilized a matrix decomposition (MD) algorithm to get rid of outliers from the miRNA-disease association matrix. Then, miRNA similarity was determined by utilizing similarity kernel fusion (SKF) to integrate miRNA function similarity and Gaussian interaction profile (GIP) kernel similarity, and disease similarity was determined by utilizing SKF to integrate disease semantic similarity and GIP kernel similarity. Furthermore, we added L2 regularization terms and similarity constraint terms to non-negative matrix factorization to form a similarity-constrained matrix factorization (SCMF) algorithm, which was applied to make prediction. MDSCMF achieved AUC values of 0.9488, 0.9540, and 0.8672 based on fivefold cross-validation (5-CV), global leave-one-out cross-validation (global LOOCV), and local leave-one-out cross-validation (local LOOCV), respectively. Case studies on three common human diseases were also implemented to demonstrate the prediction ability of MDSCMF. All experimental results confirmed that MDSCMF was effective in predicting underlying associations between miRNAs and diseases.
Collapse
Affiliation(s)
- Jiancheng Ni
- Network Information Center, Qufu Normal University, Qufu 273165, China;
| | - Lei Li
- School of Cyber Science and Engineering, Qufu Normal University, Qufu 273165, China; (Y.W.); (C.J.)
| | - Yutian Wang
- School of Cyber Science and Engineering, Qufu Normal University, Qufu 273165, China; (Y.W.); (C.J.)
| | - Cunmei Ji
- School of Cyber Science and Engineering, Qufu Normal University, Qufu 273165, China; (Y.W.); (C.J.)
| | - Chunhou Zheng
- School of Artifial Intelligence, Anhui University, Hefei 230601, China
| |
Collapse
|
5
|
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder. PLoS Comput Biol 2021; 17:e1009655. [PMID: 34890410 PMCID: PMC8694430 DOI: 10.1371/journal.pcbi.1009655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/22/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease. Numerous studies have demonstrated that miRNAs are closely related to several common human diseases, so observing unverified associations between miRNAs and diseases is conducive to the diagnose and treatment of complex diseases. Considerable models proposed to infer potential miRNA-disease associations have made the prediction more effective and productive. We constructed GCAEMDA model to acquire more accuracy prediction result by integrating graph convolutional network and autoencoder to make prediction based on multi-source miRNA and disease information. The five-fold cross validation and global leave-one-out cross validation were implemented to evaluate the performance of our model. Consequently, GCAEMDA reached AUCs of 0.9415 and 0.9505 respectively that were distinctly higher than AUCs of other comparative models. Furthermore, we carried out case studies on lung neoplasms and breast neoplasms to demonstrate the practical application of the model, 47 and 47 of top-50 candidate miRNAs were confirmed by experimental reports. In summary, GCAEMDA could be considered as an effective and accuracy model to reveal relationship between miRNAs and diseases.
Collapse
|
6
|
Wang YT, Li L, Ji CM, Zheng CH, Ni JC. ILPMDA: Predicting miRNA-Disease Association Based on Improved Label Propagation. Front Genet 2021; 12:743665. [PMID: 34659364 PMCID: PMC8514753 DOI: 10.3389/fgene.2021.743665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have been demonstrated to be related to numerous complex human diseases. Considerable studies have suggested that miRNAs affect many complicated bioprocesses. Hence, the investigation of disease-related miRNAs by utilizing computational methods is warranted. In this study, we presented an improved label propagation for miRNA-disease association prediction (ILPMDA) method to observe disease-related miRNAs. First, we utilized similarity kernel fusion to integrate different types of biological information for generating miRNA and disease similarity networks. Second, we applied the weighted k-nearest known neighbor algorithm to update verified miRNA-disease association data. Third, we utilized improved label propagation in disease and miRNA similarity networks to make association prediction. Furthermore, we obtained final prediction scores by adopting an average ensemble method to integrate the two kinds of prediction results. To evaluate the prediction performance of ILPMDA, two types of cross-validation methods and case studies on three significant human diseases were implemented to determine the accuracy and effectiveness of ILPMDA. All results demonstrated that ILPMDA had the ability to discover potential miRNA-disease associations.
Collapse
Affiliation(s)
- Yu-Tian Wang
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Lei Li
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Cun-Mei Ji
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Chun-Hou Zheng
- School of Artificial Intelligence, Anhui University, Hefei, China
| | - Jian-Cheng Ni
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| |
Collapse
|
7
|
SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization. PLoS Comput Biol 2021; 17:e1009165. [PMID: 34252084 PMCID: PMC8345837 DOI: 10.1371/journal.pcbi.1009165] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/06/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases. Considerable studies have suggested that miRNAs are closely associated with many human diseases, so predicting potential associations between miRNAs and diseases can contribute to the diagnose and treatment of diseases. Several models of discovering unknown miRNA-diseases associations make the prediction more productive and effective. We proposed SCMFMDA to obtain more accuracy prediction result by applying similarity network fusion to fuse multi-source disease and miRNA information and utilizing similarity constrained matrix factorization to make prediction based on biological information. The global Leave-one-out cross validation and five-fold cross validation were applied to evaluate our model. Consequently, SCMFMDA could achieve AUCs of 0.9675 and 0.9447 that were obviously higher than previous computational models. Furthermore, we implemented case studies on significant human diseases including colon neoplasms and lung neoplasms, 47 and 46 of top-50 were confirmed by experimental reports. All results proved that SCMFMDA could be regard as an effective way to discover unverified connections of miRNA-disease.
Collapse
|
8
|
Li A, Deng Y, Tan Y, Chen M. A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method. PLoS One 2021; 16:e0252971. [PMID: 34138933 PMCID: PMC8211179 DOI: 10.1371/journal.pone.0252971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
A large number of studies have shown that the variation and disorder of miRNAs are important causes of diseases. The recognition of disease-related miRNAs has become an important topic in the field of biological research. However, the identification of disease-related miRNAs by biological experiments is expensive and time consuming. Thus, computational prediction models that predict disease-related miRNAs must be developed. A novel network projection-based dual random walk with restart (NPRWR) was used to predict potential disease-related miRNAs. The NPRWR model aims to estimate and accurately predict miRNA-disease associations by using dual random walk with restart and network projection technology, respectively. The leave-one-out cross validation (LOOCV) was adopted to evaluate the prediction performance of NPRWR. The results show that the area under the receiver operating characteristic curve(AUC) of NPRWR was 0.9029, which is superior to that of other advanced miRNA-disease associated prediction methods. In addition, lung and kidney neoplasms were selected to present a case study. Among the first 50 miRNAs predicted, 50 and 49 miRNAs have been proven by in databases or relevant literature. Moreover, NPRWR can be used to predict isolated diseases and new miRNAs. LOOCV and the case study achieved good prediction results. Thus, NPRWR will become an effective and accurate disease-miRNA association prediction model.
Collapse
Affiliation(s)
- Ang Li
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
| | - Yingwei Deng
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
- Hainan Key Laboratory for Computational Science and Application, Haikou, China
| | - Yan Tan
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
| | - Min Chen
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
| |
Collapse
|
9
|
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021; 22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to improve the training efficiency and accuracy. This method models both the potential connections of feature space and the structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases and three miRNAs are conducted and achieved satisfactory performance.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xuhong Wang
- School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, China
| | - Qiuying Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, China
| | | | | | - Dennis Russell Salahub
- Department of Chemistry, University of Calgary, Fellow Royal Society of Canada and Fellow of the American Association for the Advancement of Science, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
10
|
Li L, Gao Z, Zheng CH, Wang Y, Wang YT, Ni JC. SNFIMCMDA: Similarity Network Fusion and Inductive Matrix Completion for miRNA-Disease Association Prediction. Front Cell Dev Biol 2021; 9:617569. [PMID: 33634120 PMCID: PMC7900415 DOI: 10.3389/fcell.2021.617569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) that belong to non-coding RNAs are verified to be closely associated with several complicated biological processes and human diseases. In this study, we proposed a novel model that was Similarity Network Fusion and Inductive Matrix Completion for miRNA-Disease Association Prediction (SNFIMCMDA). We applied inductive matrix completion (IMC) method to acquire possible associations between miRNAs and diseases, which also could obtain corresponding correlation scores. IMC was performed based on the verified connections of miRNA-disease, miRNA similarity, and disease similarity. In addition, miRNA similarity and disease similarity were calculated by similarity network fusion, which could masterly integrate multiple data types to obtain target data. We integrated miRNA functional similarity and Gaussian interaction profile kernel similarity by similarity network fusion to obtain miRNA similarity. Similarly, disease similarity was integrated in this way. To indicate the utility and effectiveness of SNFIMCMDA, we both applied global leave-one-out cross-validation and five-fold cross-validation to validate our model. Furthermore, case studies on three significant human diseases were also implemented to prove the effectiveness of SNFIMCMDA. The results demonstrated that SNFIMCMDA was effective for prediction of possible associations of miRNA-disease.
Collapse
Affiliation(s)
- Lei Li
- School of Software, Qufu Normal University, Qufu, China
| | - Zhen Gao
- School of Software, Qufu Normal University, Qufu, China
| | - Chun-Hou Zheng
- School of Software, Qufu Normal University, Qufu, China
- School of Computer Science and Technology, Anhui University, Hefei, China
| | - Yu Wang
- School of Software, Qufu Normal University, Qufu, China
| | - Yu-Tian Wang
- School of Software, Qufu Normal University, Qufu, China
| | - Jian-Cheng Ni
- School of Software, Qufu Normal University, Qufu, China
| |
Collapse
|
11
|
Wu QW, Xia JF, Ni JC, Zheng CH. GAERF: predicting lncRNA-disease associations by graph auto-encoder and random forest. Brief Bioinform 2021; 22:6067881. [PMID: 33415333 DOI: 10.1093/bib/bbaa391] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Predicting disease-related long non-coding RNAs (lncRNAs) is beneficial to finding of new biomarkers for prevention, diagnosis and treatment of complex human diseases. In this paper, we proposed a machine learning techniques-based classification approach to identify disease-related lncRNAs by graph auto-encoder (GAE) and random forest (RF) (GAERF). First, we combined the relationship of lncRNA, miRNA and disease into a heterogeneous network. Then, low-dimensional representation vectors of nodes were learned from the network by GAE, which reduce the dimension and heterogeneity of biological data. Taking these feature vectors as input, we trained a RF classifier to predict new lncRNA-disease associations (LDAs). Related experiment results show that the proposed method for the representation of lncRNA-disease characterizes them accurately. GAERF achieves superior performance owing to the ensemble learning method, outperforming other methods significantly. Moreover, case studies further demonstrated that GAERF is an effective method to predict LDAs.
Collapse
Affiliation(s)
- Qing-Wen Wu
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
| | - Jun-Feng Xia
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jian-Cheng Ni
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Chun-Hou Zheng
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
| |
Collapse
|
12
|
Lei X, Zhang C, Wang Y. Predicting Metabolite-Disease Associations Based on Spy Strategy and ABC Algorithm. Front Mol Biosci 2020; 7:603121. [PMID: 33344506 PMCID: PMC7747351 DOI: 10.3389/fmolb.2020.603121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, latent metabolite-disease associations have been a significant focus in the biomedical domain. And more and more experimental evidence has been adduced that metabolites correlate with the diagnosis of complex human diseases. Several computational methods have been developed to detect potential metabolite-disease associations. In this article, we propose a novel method based on the spy strategy and an artificial bee colony (ABC) algorithm for metabolite-disease association prediction (SSABCMDA). Due to the fact that there are large parts of missing associations in unconfirmed metabolite-disease pairs, spy strategy is adopted to extract reliable negative samples from unconfirmed pairs. Considering the effects of parameters, the ABC algorithm is utilized to optimize parameters. In relevant cross-validation experiments, our method achieves excellent predictive performance. Moreover, three types of case studies are conducted on three common diseases to demonstrate the validity and utility of SSABCMDA method. Relevant experimental results indicate that our method can predict potential associations between metabolites and diseases effectively.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Cheng Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yueyue Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|