1
|
Zhang X, Ding Y, Ma Q, Li F, Tao R, Li T, Zhu M, Ding J, Li C, Guo W, Zhu X. Comparative transcriptomic and metabolomic analysis revealed molecular mechanism of two wheat near-isogenic lines response to nitrogen application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:47-57. [PMID: 36599275 DOI: 10.1016/j.plaphy.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential nutrient element required for plant growth, and the development of wheat varieties with high nitrogen use efficiency (NUE) is an urgent need for sustainable crop production. However, the molecular mechanism of NUE between diverse wheat varieties in response to N application remains unclear. To reveal the possible molecular mechanisms underlying this complex phenomenon, we investigated the transcriptional and metabolic changes of flag leaves of two wheat near-isogenic lines (NILs) differing in NUE under two N fertilizer treatments. Comparative transcriptome analysis indicated that the expression levels of the genes responsible for carbon and nitrogen metabolism were significantly higher in high-NUE wheat. The metabolome comparison revealed that the activity of the tricarboxylic acid (TCA) cycle was enhanced in high-NUE wheat, while reduced in low-NUE wheat after the N fertilizer application. Additionally, amino acid metabolism increased in both wheat NILs but more increased in high-NUE wheat. In summary, more upregulated transcripts and metabolites were identified in high-NUE wheat, and this study provides valuable new insights for improving NUE in wheat.
Collapse
Affiliation(s)
- Xinbo Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Xuzhou Vocational College of Bioengineering, Xuzhou, 221006, China.
| | - Yonggang Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Quan Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Fujian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Rongrong Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Tao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Wang Y, Hou Y, Wang J, Zhao H. Analyzing lignin biosynthesis pathways in rattan using improved co-expression networks of NACs and MYBs. BMC PLANT BIOLOGY 2022; 22:411. [PMID: 36002818 PMCID: PMC9400238 DOI: 10.1186/s12870-022-03786-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The rattan is a valuable plant resource with multiple applications in tropical forests. Calamus simplicifolius and Daemonorops jenkinsiana are the two most representative rattan species, supplying over 95% of the raw materials for the rattan industry. Hence, the wood properties of both rattans have always attracted researchers' attention. RESULTS We re-annotated the genomes, obtained 81 RNA-Seq datasets, and developed an improved pipeline to increase the reliability of co-expression networks of both rattans. Based on the data and pipeline, co-expression relationships were detected in 11 NACs, 49 MYBs, and 86 lignin biosynthesis genes in C. simplicifolius and four NACs, 59 MYBs, and 76 lignin biosynthesis genes in D. jenkinsiana, respectively. Among these co-expression pairs, several genes had a close relationship to the development of wood properties. Additionally, we detected the enzyme gene on the lignin biosynthesis pathway was regulated by either NAC or MYB, while LACCASES was regulated by both NAC and MYB. For D. jenkinsiana, the lignin biosynthesis regulatory network was characterized by positive regulation, and MYB possible negatively regulate non-expressed lignin biosynthesis genes in stem tissues. For C. simplicifolius, NAC may positively regulate highly expressed genes and negatively regulate non-expressed lignin biosynthesis genes in stem tissues. Furthermore, we established core regulatory networks of NAC and MYB for both rattans. CONCLUSIONS This work improved the accuracy of rattan gene annotation by integrating an efficient co-expression network analysis pipeline, enhancing gene coverage and accuracy of the constructed network, and facilitating an understanding of co-expression relationships among NAC, MYB, and lignin biosynthesis genes in rattan and other plants.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yinguang Hou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Jiongliang Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Huangpu District, Guangzhou, 510530, China
| | - Hansheng Zhao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|
3
|
Xiao Q, Li Z, Qu M, Xu W, Su Z, Yang J. LjaFGD: Lonicera japonica functional genomics database. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1422-1436. [PMID: 33982879 DOI: 10.1111/jipb.13112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Lonicera japonica Thunb., a traditional Chinese herb, has been used for treating human diseases for thousands of years. Recently, the genome of L. japonica has been decoded, providing valuable information for research into gene function. However, no comprehensive database for gene functional analysis and mining is available for L. japonica. We therefore constructed LjaFGD (www.gzybioinformatics.cn/LjaFGD and bioinformatics.cau.edu.cn/LjaFGD), a database for analyzing and comparing gene function in L. japonica. We constructed a gene co-expression network based on 77 RNA-seq samples, and then annotated genes of L. japonica by alignment against protein sequences from public databases. We also introduced several tools for gene functional analysis, including Blast, motif analysis, gene set enrichment analysis, heatmap analysis, and JBrowse. Our co-expression network revealed that MYB and WRKY transcription factor family genes were co-expressed with genes encoding key enzymes in the biosynthesis of chlorogenic acid and luteolin in L. japonica. We used flavonol synthase 1 (LjFLS1) as an example to show the reliability and applicability of our database. LjaFGD and its various associated tools will provide researchers with an accessible platform for retrieving functional information on L. japonica genes to further biological discovery.
Collapse
Affiliation(s)
- Qiaoqiao Xiao
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengmeng Qu
- Research Center for Clinical & Translational Medicine, Fifth Medical Center for General Hospital of PLA, Beijing, 100039, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiaotong Yang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| |
Collapse
|
4
|
Ghosh Dasgupta M, Dev SA, Muneera Parveen AB, Sarath P, Sreekumar VB. Draft genome of Korthalsia laciniosa (Griff.) Mart., a climbing rattan elucidates its phylogenetic position. Genomics 2021; 113:2010-2022. [PMID: 33862180 DOI: 10.1016/j.ygeno.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/21/2021] [Accepted: 04/11/2021] [Indexed: 12/28/2022]
Abstract
Korthalsia laciniosa (Griff.) Mart. is a climbing rattan used as a source of durable and flexible cane. In the present study, the draft genome of K. laciniosa was sequenced, de novo assembled and annotated. Genome-wide identification of MADS-Box transcription factors revealed loss of Mβ, and Mγ genes belonging to Type I subclass in the rattan lineage. Mining of the genome revealed presence of 13 families of lignin biosynthetic pathway genes and expression profiling of nine major genes documented relatively lower level of expression in cirrus when compared to leaflet and petiole. The chloroplast genome was re-constructed and analysis revealed the phylogenetic relatedness of this genus to Eugeissona, in contrast with its present taxonomic position. The genomic resource generated in the present study will accelerate population structure analysis, genetic resource conservation, phylogenomics and facilitate understanding the unique developmental processes like gender expression at molecular level.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore Pincode-641002, India
| | - Suma Arun Dev
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi P. O, Thrissur, Kerala 680653, India
| | - Abdul Bari Muneera Parveen
- Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore Pincode-641002, India
| | - Paremmal Sarath
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi P. O, Thrissur, Kerala 680653, India; Ph.D. Scholar, Forest Research Institute Deemed to be University, Dehradun, Uttarakhand, India
| | - V B Sreekumar
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi P. O, Thrissur, Kerala 680653, India
| |
Collapse
|