1
|
Paul EN, Carpenter TJ, Fitch S, Sheridan R, Lau KH, Arora R, Teixeira JM. Cysteine-rich intestinal protein 1 is a novel surface marker for human myometrial stem/progenitor cells. Commun Biol 2023; 6:686. [PMID: 37400623 DOI: 10.1038/s42003-023-05061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better markers. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers. CRIP1 expression was found highly upregulated by both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.
Collapse
Affiliation(s)
- Emmanuel N Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Tyler J Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, 48824, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, 48824, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
2
|
Andrews JG, Galindo MK, Thomas S, Mathews KD, Whitehead N. DMD Gene and Dystrophinopathy Phenotypes Associated With Mutations: A Systematic Review for Clinicians. J Clin Neuromuscul Dis 2023; 24:171-187. [PMID: 37219861 DOI: 10.1097/cnd.0000000000000436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABSTRACT The diagnosis of Duchenne and Becker muscular dystrophy (DBMD) is made by genetic testing in approximately 95% of cases. Although specific mutations can be associated with skeletal muscle phenotype, pulmonary and cardiac comorbidities (leading causes of death in Duchenne) have not been associated with Duchenne muscular dystrophy mutation type or location and vary within families. Therefore, identifying predictors for phenotype severity beyond frameshift prediction is important clinically. We performed a systematic review assessing research related to genotype-phenotype correlations in DBMD. While there are severity differences across the spectrum and within mild and severe forms of DBMD, few protective or exacerbating mutations within the dystrophin gene were reported. Except for intellectual disability, clinical test results reporting genotypic information are insufficient for clinical prediction of severity and comorbidities and the predictive validity is too low to be useful when advising families. Including expanded information coupled with proposed severity predictions in clinical genetic reports for DBMD is critical for improving anticipatory guidance.
Collapse
Affiliation(s)
- Jennifer G Andrews
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ
| | | | | | - Katherine D Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | | |
Collapse
|
3
|
Paul EN, Carpenter TJ, Fitch S, Sheridan R, Lau KH, Arora R, Teixeira JM. Cysteine-Rich Intestinal Protein 1 is a Novel Surface Marker for Myometrial Stem/Progenitor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529273. [PMID: 36993447 PMCID: PMC10054937 DOI: 10.1101/2023.02.20.529273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, which are benign tumors that develop in the myometrium of most reproductive age women, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better discerning markers for more rigorous downstream analyses. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers capable of further enriching for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers, including SUSD2. CRIP1 expression was found highly upregulated in both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.
Collapse
Affiliation(s)
- Emmanuel N. Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Tyler J. Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Jose M. Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| |
Collapse
|
4
|
Fortunato F, Ferlini A. Biomarkers in Duchenne Muscular Dystrophy: Current Status and Future Directions. J Neuromuscul Dis 2023; 10:987-1002. [PMID: 37545256 PMCID: PMC10657716 DOI: 10.3233/jnd-221666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy is a severe, X-linked disease characterized by decreased muscle mass and function in children. Genetic and biochemical research over the years has led to the characterization of the cause and the pathophysiology of the disease. Moreover, the elucidation of genetic mechanisms underlining Duchenne muscular dystrophy has allowed for the design of innovative personalized therapies.The identification of specific, accurate, and sensitive biomarkers is becoming crucial for evaluating muscle disease progression and response to therapies, disease monitoring, and the acceleration of drug development and related regulatory processes.This review illustrated the up-to-date progress in the development of candidate biomarkers in DMD at the level of proteins, metabolites, micro-RNAs (miRNAs) and genetic modifiers also highlighting the complexity of translating research results to clinical practice.We highlighted the challenges encountered in translating biomarkers into the clinical context and the existing bottlenecks hampering the adoption of biomarkers as surrogate endpoints. These challenges could be overcome by national and international collaborative efforts, multicenter data sharing, definition of public biobanks and patients' registries, and creation of large cohorts of patients. Novel statistical tools/ models suitable to analyze small patient numbers are also required.Finally, collaborations with pharmaceutical companies would greatly benefit biomarker discovery and their translation in clinical trials.
Collapse
Affiliation(s)
- Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Yébenes Mayordomo M, Al Shboul S, Gómez-Herranz M, Azfer A, Meynert A, Salter D, Hayward L, Oniscu A, Patton JT, Hupp T, Arends MJ, Alfaro JA. Gorham-Stout case report: a multi-omic analysis reveals recurrent fusions as new potential drivers of the disease. BMC Med Genomics 2022; 15:128. [PMID: 35668402 PMCID: PMC9169400 DOI: 10.1186/s12920-022-01277-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gorham-Stout disease is a rare condition characterized by vascular proliferation and the massive destruction of bone tissue. With less than 400 cases in the literature of Gorham-Stout syndrome, we performed a unique study combining whole-genome sequencing and RNA-Seq to probe the genomic features and differentially expressed pathways of a presented case, revealing new possible drivers and biomarkers of the disease. CASE PRESENTATION We present a case report of a white 45-year-old female patient with marked bone loss of the left humerus associated with vascular proliferation, diagnosed with Gorham-Stout disease. The analysis of whole-genome sequencing showed a dominance of large structural DNA rearrangements. Particularly, rearrangements in chromosomes seven, twelve, and twenty could contribute to the development of the disease, especially a gene fusion involving ATG101 that could affect macroautophagy. The study of RNA-sequencing data from the patient uncovered the PI3K/AKT/mTOR pathway as the most affected signaling cascade in the Gorham-Stout lesional tissue. Furthermore, M2 macrophage infiltration was detected using immunohistochemical staining and confirmed by deconvolution of the RNA-seq expression data. CONCLUSIONS The way that DNA and RNA aberrations lead to Gorham-Stout disease is poorly understood due to the limited number of studies focusing on this rare disease. Our study provides the first glimpse into this facet of the disease, exposing new possible therapeutic targets and facilitating the clinicopathological diagnosis of Gorham-Stout disease.
Collapse
Affiliation(s)
| | - Sofian Al Shboul
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Maria Gómez-Herranz
- International Center for Cancer Vaccine Science (ICCVS), University of Gdansk, Gdańsk, Poland
- Edinburgh Pathology, Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland
| | - Asim Azfer
- Edinburgh Pathology, Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Donald Salter
- Edinburgh Pathology, Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland
| | - Larry Hayward
- Edinburgh Pathology, Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland
| | - Anca Oniscu
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, Scotland
| | - James T Patton
- Department of Orthopaedic Surgery, Royal Infirmary of Edinburgh, Edinburgh, Scotland
| | - Ted Hupp
- Edinburgh Pathology, Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland
| | - Mark J Arends
- Edinburgh Pathology, Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland
| | - Javier Antonio Alfaro
- International Center for Cancer Vaccine Science (ICCVS), University of Gdansk, Gdańsk, Poland.
| |
Collapse
|
6
|
Fortunato F, Ferlini A. Clinical application of molecular biomarkers in Duchenne muscular dystrophy: challenges and perspectives. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1903872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Mroczek M, Sanchez MG. Genetic modifiers and phenotypic variability in neuromuscular disorders. J Appl Genet 2020; 61:547-558. [PMID: 32918245 DOI: 10.1007/s13353-020-00580-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Neuromuscular disorders are mostly rare diseases with autosomal dominant, recessive, or X-linked inheritance. Interestingly, among patients carrying the same mutations, a range of phenotypic severity is reported. This phenotypic variability in neuromuscular disorders is still not fully understood. This review will focus on genetic modifiers and will briefly describe metabolic pathways, in which they are involved. Genetic modifiers are variants in the same or other genes that modulate the phenotype. Proteins encoded by genetic modifiers in neuromuscular diseases are taking part in different metabolic processes, most commonly in inflammation, growth and regeneration, endoplasmic reticulum metabolism, and cytoskeletal activities. Recent advances in omics technologies, development of computational algorithms, and establishing large international consortia intensified discovery sped up investigation of genetic modifiers. As more individuals affected by neuromuscular disorders are tested, it is often suggested that classic models of genetic causation cannot explain phenotypic variability. There is a growing interest in their discovery and identifying shared metabolic pathways can contribute to design targeted therapies. We provide an update on variants acting as genetic modifiers in neuromuscular disorders and strategies used for their discovery.
Collapse
Affiliation(s)
- Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Maria Gabriela Sanchez
- Molecular Biology Department, Simon Bolivar University, Sartenejas Valley, Caracas, Venezuela
| |
Collapse
|