1
|
Reche DL, Gonçalves‐Vidigal MC, Vidigal Filho PS, Vaz Bisneta M, Lacanallo GF, dos Santos AAB, dos Santos AP. Genetic mapping of loci associated with yield and their components in black common bean (Phaseolus vulgaris L.). THE PLANT GENOME 2025; 18:e70024. [PMID: 40189482 PMCID: PMC11972933 DOI: 10.1002/tpg2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
The increase in world population linked to climate change leads to the need to develop more productive and more adapted cultivars of food species. Quantitative trait loci (QTLs) mapping is a useful tool although, interaction between genotype and the environment is still a challenge. In this study, we sought to identify QTL related to grain yield and the production components in common beans (Phaseolus vulgaris L.) supported by QTL × $\times $ environment interaction. Two hundred eight recombinant inbred lines obtained from the Awauna UEM × $ \times $ IPR88 Uirapuru common bean cross were evaluated in 2017, 2018, and 2019 in field conditions under a 15 × 15 triple lattice experimental design. QTL mapping was estimated using genotypic means and a genetic linkage map with 288 single nucleotide polymorphism markers. Five QTLs associated with plant height (PH), number of pods per plant (NPP), first pod height (FPH), 100-seed weight (SW), and grain yield per plant (GYP) were identified on chromosomes Pv01, Pv04, Pv08, and Pv10. Interestingly, three of these QTLs were co-localized for more than one trait, where the QTL for PH, NPP, and GYP co-locate on Pv01, the QTL for PH and FPH co-locate on Pv04, and the QTL for NPP and SW co-locate on Pv08. In turn, on Pv10, two distinct QTLs were found for SW. The identification of these QTLs stands out in Brazil since relatively little research is directed at this economically important commercial group. It is noteworthy that the molecular markers found linked to the QTLs must later be validated to be used in a multi-trait marker-assisted selection.
Collapse
|
2
|
Akinmade H, Ferreira RCU, Murad Leite Andrade MH, Fernandes C, Sipowicz P, Muñoz-Amatriaín M, Rios E. Genome-wide association studies dissect the genetic architecture of seed and yield component traits in cowpea (Vigna unguiculata L. Walp). G3 (BETHESDA, MD.) 2025; 15:jkaf024. [PMID: 39920462 PMCID: PMC12005157 DOI: 10.1093/g3journal/jkaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/18/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025]
Abstract
The identification of loci related to seed and yield component traits in cowpea constitutes a key step for improvement through marker-assisted selection (MAS). Furthermore, seed morphology has an impact on industrial processing and influences consumer and farmer preferences. In this study, we performed genome-wide association studies (GWAS) on a mini-core collection of cowpea to dissect the genetic architecture and detect genomic regions associated with seed morphological traits and yield components. Phenotypic data were measured both manually and by high-throughput image-based approaches to test associations with 41,533 single nucleotide polymorphism markers using the FarmCPU model. From genome-associated regions, we also investigated putative candidate genes involved in the variation of the phenotypic traits. We detected 42 marker-trait associations for pod length and 100-seed weight, length, width, perimeter, and area of the seed. Candidate genes encoding leucine-rich repeat-containing (LRR) and F-box proteins, known to be associated with seed size, were identified; in addition, we identified candidate genes encoding PPR (pentatricopeptide repeat) proteins, recognized to have an important role in seed development in several crops. Our findings provide insights into natural variation in cowpea for yield-related traits and valuable information for MAS breeding strategies in this and other closely related crops.
Collapse
Affiliation(s)
- Habib Akinmade
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL 32611, USA
| | | | | | - Claudio Fernandes
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Pablo Sipowicz
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL 32611, USA
| | - María Muñoz-Amatriaín
- Departamento de Biología Molecular (Área Genética), Universidad de León, León 24071, Spain
| | - Esteban Rios
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
de Paula E, de Almeida RN, Santos TDO, de Souza Neto JD, Riva-Souza EM, Posse SCP, Souza MN, Madella de Oliveira ADF, Santos Júnior AC, Santos JO, Pimenta S, Bento CDS, Moulin MM. Genetic Diversity of Common Bean ( Phaseolus vulgaris L.) Landraces Based on Morphological Traits and Molecular Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:2584. [PMID: 39339559 PMCID: PMC11434804 DOI: 10.3390/plants13182584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
The objective of this study was to evaluate the genetic diversity among traditional common bean accessions through morphological descriptors and molecular markers. Sixty-seven common bean accessions from the Germplasm bank of the Instituto Federal of Espírito Santo-Campus de Alegre were evaluated. For this, 25 specific morphological descriptors were used, namely 12 quantitative and 13 qualitative ones. A diversity analysis based on morphological descriptors was carried out using the Gower algorithm. For molecular characterization, 23 ISSR primers were used to estimate dissimilarity using the Jaccard Index. Based on the dendrograms obtained by the UPGMA method, for morphological and molecular characterization, high genetic variability was observed between the common bean genotypes studied, evidenced by cophenetic correlation values in the order of 0.99, indicating an accurate representation of the dissimilarity matrix by the UPGMA clustering. In the morphological characterization, high phenotypic diversity was observed between the accessions, with grains of different shapes, colors, and sizes, and the accessions were grouped into nine distinct groups. Molecular characterization was efficient in separating the genotypes in the Andean and Mesoamerican groups, with the 23 ISSR primers studied generating an average of 6.35 polymorphic bands. The work identified divergent accessions that can serve different market niches, which can be indicated as parents to form breeding programs in order to obtain progenies with high genetic variability.
Collapse
Affiliation(s)
- Evaldo de Paula
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER), 60 Kurt Lwein Av., Domingos Martins 29273-700, ES, Brazil; (E.d.P.); (E.M.R.-S.); (S.C.P.P.)
| | - Rafael Nunes de Almeida
- Laboratory of Agricultural Engineering, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 2000 Alberto Lamego Av., Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Talles de Oliveira Santos
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 2000 Alberto Lamego Av., Campos dos Goytacazes 28013-602, RJ, Brazil
| | - José Dias de Souza Neto
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo—Campus de Alegre, Rodovia ES-482 (Cachoeiro-Alegre, Km 72), Alegre 29500-000, ES, Brazil; (J.D.d.S.N.); (M.N.S.); (A.d.F.M.d.O.); (A.C.S.J.)
| | - Elaine Manelli Riva-Souza
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER), 60 Kurt Lwein Av., Domingos Martins 29273-700, ES, Brazil; (E.d.P.); (E.M.R.-S.); (S.C.P.P.)
| | - Sheila Cristina Prucoli Posse
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER), 60 Kurt Lwein Av., Domingos Martins 29273-700, ES, Brazil; (E.d.P.); (E.M.R.-S.); (S.C.P.P.)
| | - Maurício Novaes Souza
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo—Campus de Alegre, Rodovia ES-482 (Cachoeiro-Alegre, Km 72), Alegre 29500-000, ES, Brazil; (J.D.d.S.N.); (M.N.S.); (A.d.F.M.d.O.); (A.C.S.J.)
| | - Aparecida de Fátima Madella de Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo—Campus de Alegre, Rodovia ES-482 (Cachoeiro-Alegre, Km 72), Alegre 29500-000, ES, Brazil; (J.D.d.S.N.); (M.N.S.); (A.d.F.M.d.O.); (A.C.S.J.)
| | - Alexandre Cristiano Santos Júnior
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo—Campus de Alegre, Rodovia ES-482 (Cachoeiro-Alegre, Km 72), Alegre 29500-000, ES, Brazil; (J.D.d.S.N.); (M.N.S.); (A.d.F.M.d.O.); (A.C.S.J.)
| | - Jardel Oliveira Santos
- Department of Biology, Universidade Federal do Piauí, 1401-1519 Dirce Oliveira St., Teresina 64048-550, PI, Brazil;
| | - Samy Pimenta
- Department of Agriculture, Universidade Estadual de Montes Claros (UNIMONTES), 2630 Reinaldo Viana St., Janaúba 39440-000, MG, Brazil;
| | - Cintia dos Santos Bento
- Laboratory of Plant Breeding, Universidade Federal do Espírito Santo (UFES), Alto Universitário, Alegre 29500-000, ES, Brazil;
| | - Monique Moreira Moulin
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo—Campus de Alegre, Rodovia ES-482 (Cachoeiro-Alegre, Km 72), Alegre 29500-000, ES, Brazil; (J.D.d.S.N.); (M.N.S.); (A.d.F.M.d.O.); (A.C.S.J.)
| |
Collapse
|
4
|
García-Fernández C, Jurado M, Campa A, Bitocchi E, Papa R, Ferreira JJ. Genetic control of pod morphological traits and pod edibility in a common bean RIL population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:6. [PMID: 38091106 PMCID: PMC10719158 DOI: 10.1007/s00122-023-04516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
KEY MESSAGE QTL mapping, association analysis, and colocation study with previously reported QTL revealed three main regions controlling pod morphological traits and two loci for edible pod characteristics on the common bean chromosomes Pv01 and Pv06. Bean pod phenotype is a complex characteristic defined by the combination of different traits that determine the potential use of a genotype as a snap bean. In this study, the TUM RIL population derived from a cross between 'TU' (dry) and 'Musica' (snap) was used to investigate the genetic control of pod phenotype. The character was dissected into pod morphological traits (PMTs) and edible pod characteristics (EPC). The results revealed 35 QTL for PMTs located on seven chromosomes, suggesting a strong QTL colocation on chromosomes Pv01 and Pv06. Some QTL were colocated with previously reported QTL, leading to the mapping of 15 consensus regions associated with bean PMTs. Analysis of EPC of cooked beans revealed that two major loci with epistatic effect, located on chromosomes Pv01 and Pv06, are involved in the genetic control of this trait. An association study using a subset of the Spanish Diversity Panel (snap vs. non-snap) detected 23 genomic regions, with three regions being mapped at a position similar to those of two loci identified in the TUM population. The results demonstrated the relevant roles of Pv01 and Pv06 in the modulation of bean pod phenotype. Gene ontology enrichment analysis revealed a significant overrepresentation of genes regulating the phenylpropanoid metabolic process and auxin response in regions associated with PMTs and EPC, respectively. Both biological functions converged in the lignin biosynthetic pathway, suggesting the key role of the pathway in the genetic control of bean pod phenotype.
Collapse
Affiliation(s)
- Carmen García-Fernández
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain.
| | - Maria Jurado
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Elena Bitocchi
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Juan Jose Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
5
|
Shao Z, Shao J, Huo X, Li W, Kong Y, Du H, Li X, Zhang C. Identification of closely associated SNPs and candidate genes with seed size and shape via deep re-sequencing GWAS in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2341-2351. [PMID: 35588015 DOI: 10.1007/s00122-022-04116-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE A soybean natural population was genotyped by deep re-sequencing and phenotyped for six seed size- and shape-related traits under six environments to identify closely associated SNPs and candidate genes. Seed size and shape are important determining factors for soybean yield formation, while their genetic basis and molecular mechanism are still largely unknown, which seriously constrains the increasing of soybean yield at present. In view of this, a natural population was genotyped via the deep re-sequencing technique (~ 20 ×) and phenotyped for six related traits under six environments. In total, 154 SNPs were closely associated with seed length across diverse environments, and 323, 483, 565, 394 and 2038 SNPs were closely associated with seed width, seed diameter, seed circumference, seed area and ratio of length to width under multiple environments. Moreover, 98.70%, 96.28%, 48.24%, 85.13%, 97.21% and 98.58% of them were further demonstrated by the BLUP and mean values of the related traits. Furthermore, 218 genes flanking the associated SNPs on chromosomes 6 and 10 were analyzed for DNA mutations and RNA expressions through SNP alleles and transcriptome data, simultaneously. The candidate genes, Glyma.10G035200 (Sn1-specific diacylglycerol lipase), Glyma.10G035400 (transcription factor) and Glyma.10G058200 (phenylalanine ammonia-lyase), were discovered to relate with the seed size and shape for their different DNA sequences or differential RNA expressions among soybean varieties at five seed developmental stages. Thus, these closely associated SNPs and related genes provide novel insights and useful information for the seed size and shape genetic basis dissection and breeding improvement in soybean.
Collapse
Affiliation(s)
- Zhenqi Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071001, Hebei Province, People's Republic of China
| | - Jiabiao Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071001, Hebei Province, People's Republic of China
| | - Xiaobo Huo
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071001, Hebei Province, People's Republic of China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071001, Hebei Province, People's Republic of China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071001, Hebei Province, People's Republic of China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071001, Hebei Province, People's Republic of China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071001, Hebei Province, People's Republic of China.
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071001, Hebei Province, People's Republic of China.
| |
Collapse
|
6
|
Nasar S, Ostevik K, Murtaza G, Rausher MD. Morphological and molecular characterization of variation in common bean (Phaseolus vulgaris L.) germplasm from Azad Jammu and Kashmir, Pakistan. PLoS One 2022; 17:e0265817. [PMID: 35472209 PMCID: PMC9041810 DOI: 10.1371/journal.pone.0265817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Phaseolus vulgaris, an essential food and source of protein, is cultivated across the world. This study was carried out to investigate the diversity and population structure of 34 P. vulgaris landrace accessions collected from the Azad Jammu and Kashmir (AJ&K) regions of Pakistan. The samples were analyzed both morphologically and using genetic variation identified through RNA sequencing. Our results indicated that most genetic variation occurs among local accessions, with little genetic variation occurring between geographical regions. In addition, the accessions fell into two major genetic groups. Morphological analysis revealed that these two genetic groups differ in a number of quantitative traits, including seed length, seed width, and seed weight. One accession, DUD-11, appears to be a mixture of the two major groups genetically as well as morphologically. Among the other accessions, DUD-8, RWK-2, and NGD-1 depicted particularly high seed weight along with higher seed length, seed width, and seed yield per plant. We suggest focusing on these accessions in future breeding programs. More generally, our results provide baseline data that will be useful for crop improvement and effective cultivation practices in Pakistan.
Collapse
Affiliation(s)
- Sidra Nasar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Kate Ostevik
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, United States of America
| | - Ghulam Murtaza
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Mark D. Rausher
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Giordani W, Gama HC, Chiorato AF, Garcia AAF, Vieira MLC. Genome-wide association studies dissect the genetic architecture of seed shape and size in common bean. G3 (BETHESDA, MD.) 2022; 12:jkac048. [PMID: 35218340 PMCID: PMC8982408 DOI: 10.1093/g3journal/jkac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Seed weight and size are important yield components. Thus, selecting for large seeds has been a key objective in crop domestication and breeding. In common bean, seed shape is also important since it influences industrial processing and plays a vital role in determining the choices of consumers and farmers. In this study, we performed genome-wide association studies on a core collection of common bean accessions to dissect the genetic architecture and identify genomic regions associated with seed morphological traits related to weight, size, and shape. Phenotypic data were collected by high-throughput image-based approaches, and utilized to test associations with 10,362 single-nucleotide polymorphism markers using multilocus mixed models. We searched within genome-associated regions for candidate genes putatively involved in seed phenotypic variation. The collection exhibited high variability for the entire set of seed traits, and the Andean gene pool was found to produce larger, heavier seeds than the Mesoamerican gene pool. Strong pairwise correlations were verified for most seed traits. Genome-wide association studies identified marker-trait associations accounting for a considerable amount of phenotypic variation in length, width, projected area, perimeter, and circularity in 4 distinct genomic regions. Promising candidate genes were identified, e.g. those encoding an AT-hook motif nuclear-localized protein 8, type 2C protein phosphatases, and a protein Mei2-like 4 isoform, known to be associated with seed size and weight regulation. Moreover, the genes that were pinpointed are also good candidates for functional analysis to validate their influence on seed shape and size in common bean and other related crops.
Collapse
Affiliation(s)
- Willian Giordani
- Department of Genetics, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Henrique Castro Gama
- Department of Genetics, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | | | - Antonio Augusto Franco Garcia
- Department of Genetics, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Department of Genetics, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| |
Collapse
|
8
|
Delfini J, Moda-Cirino V, dos Santos Neto J, Zeffa DM, Nogueira AF, Ribeiro LAB, Ruas PM, Gepts P, Gonçalves LSA. Genome-Wide Association Study Identifies Genomic Regions for Important Morpho-Agronomic Traits in Mesoamerican Common Bean. FRONTIERS IN PLANT SCIENCE 2021; 12:748829. [PMID: 34691125 PMCID: PMC8528967 DOI: 10.3389/fpls.2021.748829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 05/25/2023]
Abstract
The population growth trend in recent decades has resulted in continuing efforts to guarantee food security in which leguminous plants, such as the common bean (Phaseolus vulgaris L.), play a particularly important role as they are relatively cheap and have high nutritional value. To meet this demand for food, the main target for genetic improvement programs is to increase productivity, which is a complex quantitative trait influenced by many component traits. This research aims to identify Quantitative Trait Nucleotides (QTNs) associated with productivity and its components using multi-locus genome-wide association studies. Ten morpho-agronomic traits [plant height (PH), first pod insertion height (FPIH), number of nodules (NN), pod length (PL), total number of pods per plant (NPP), number of locules per pod (LP), number of seeds per pod (SP), total seed weight per plant (TSW), 100-seed weight (W100), and grain yield (YLD)] were evaluated in four environments for 178 Mesoamerican common bean domesticated accessions belonging to the Brazilian Diversity Panel. In order to identify stable QTNs, only those identified by multiple methods (mrMLM, FASTmrMLM, pLARmEB, and ISIS EM-BLASSO) or in multiple environments were selected. Among the identified QTNs, 64 were detected at least thrice by different methods or in different environments, and 39 showed significant phenotypic differences between their corresponding alleles. The alleles that positively increased the corresponding traits, except PH (for which lower values are desired), were considered favorable alleles. The most influenced trait by the accumulation of favorable alleles was PH, showing a 51.7% reduction, while NN, TSW, YLD, FPIH, and NPP increased between 18 and 34%. Identifying QTNs in several environments (four environments and overall adjusted mean) and by multiple methods reinforces the reliability of the associations obtained and the importance of conducting these studies in multiple environments. Using these QTNs through molecular techniques for genetic improvement, such as marker-assisted selection or genomic selection, can be a strategy to increase common bean production.
Collapse
Affiliation(s)
- Jessica Delfini
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vânia Moda-Cirino
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
| | - José dos Santos Neto
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Douglas Mariani Zeffa
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Alison Fernando Nogueira
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Luriam Aparecida Brandão Ribeiro
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Paulo Maurício Ruas
- Departamento de Biologia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Paul Gepts
- Section of Crop and Ecosystem Sciences, Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Leandro Simões Azeredo Gonçalves
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
9
|
Nadeem MA, Yeken MZ, Shahid MQ, Habyarimana E, Yılmaz H, Alsaleh A, Hatipoğlu R, Çilesiz Y, Khawar KM, Ludidi N, Ercişli S, Aasim M, Karaköy T, Baloch FS. Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1920462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Mehmet Zahit Yeken
- Department of Field Crops, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, PR China
| | | | - Hilal Yılmaz
- Department of Plant and Animal Production, Izmit Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Ahmad Alsaleh
- Department of Food and Agriculture, Insitutue of Hemp Research, Yozgat Bozok University, 66200, Yozgat, Turkey
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agricultural, University of Cukurova, Adana, Turkey
| | - Yeter Çilesiz
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Khalid Mahmood Khawar
- Department of Field Crops, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Ndiko Ludidi
- Department of Biotechnology and DSI-NRF Center of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Sezai Ercişli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| |
Collapse
|
10
|
Nkhata W, Shimelis H, Melis R, Chirwa R, Mzengeza T, Mathew I, Shayanowako A. Genome-wide association analysis of bean fly resistance and agro-morphological traits in common bean. PLoS One 2021; 16:e0250729. [PMID: 33914796 PMCID: PMC8084209 DOI: 10.1371/journal.pone.0250729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
The bean fly (Ophiomyia spp) is a key insect pest causing significant crop damage and yield loss in common bean (Phaseolus vulgaris L., 2n = 2x = 22). Development and deployment of agronomic superior and bean fly resistant common bean varieties aredependent on genetic variation and the identification of genes and genomic regions controlling economic traits. This study's objective was to determine the population structure of a diverse panel of common bean genotypes and deduce associations between bean fly resistance and agronomic traits based on single nucleotide polymorphism (SNP) markers. Ninety-nine common bean genotypes were phenotyped in two seasons at two locations and genotyped with 16 565 SNP markers. The genotypes exhibited significant variation for bean fly damage severity (BDS), plant mortality rate (PMR), and pupa count (PC). Likewise, the genotypes showed significant variation for agro-morphological traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield (GYD). The genotypes were delineated into two populations, which were based on the Andean and Mesoamerican gene pools. The genotypes exhibited a minimum membership coefficient of 0.60 to their respective populations. Eighty-three significant (P<0.01) markers were identified with an average linkage disequilibrium of 0.20 at 12Mb across the 11 chromosomes. Three markers were identified, each having pleiotropic effects on two traits: M100049197 (BDS and NPP), M3379537 (DTF and PC), and M13122571 (NPP and GYD). The identified markers are useful for marker-assisted selection in the breeding program to develop common bean genotypes with resistance to bean fly damage.
Collapse
Affiliation(s)
- Wilson Nkhata
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rob Melis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rowland Chirwa
- Alliance of Biodiversity International and CIAT, Chitedze Agricultural Station, Lilongwe, Malawi
| | - Tenyson Mzengeza
- Department of Agricultural Research Service, Chitedze Agricultural Research Station, Lilongwe, Malawi
| | - Isack Mathew
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Admire Shayanowako
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|