1
|
Xu M, Fang W, Lin G, Zhu X, Lu J. Transcriptomic Responses and Larval-Stage Growth of Protandrous Yellowfin Seabream (Acanthopagrus Latus) to Different Polyethylene Microplastics Exposure. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:931-942. [PMID: 38896300 DOI: 10.1007/s10126-024-10334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Polyethylene microplastics (PE-MPs) were widespread in the marine environment; thus, their influences on marine hermaphroditic fish cannot be ignored. This study intends to evaluate the adverse biological effects of two different sources of PE, identified by Raman spectroscopy, on protandrous yellowfin seabream (Acanthopagrus latus) larvae. Growth retardation, brain lesions, head/body length ratio increase, and neuroendocrine system disorders were found, and growth and neuroendocrine regulation-related genes such as sstr2, ghrb, irs1, UGT2B15, UGT2C1, drd4a, esr2b, hsd3b7, and hsd17b2 were identified. PE microbeads (100 μm) showed more severe tissue damage on fish, while environmental PE fibers (500-2500 μm) showed more imperceptible adverse effects. There were 218 DEGs up-regulated and 147 DEGs down-regulated in the environmental PE group, while 1284 (up) and 1267 (down) DEGs were identified in the virgin PE group. PE-MP stress influenced physiological processes like growth and neuroendocrine regulation and cholesterol-steroid metabolism, and caused tissue damage in the fish larvae. The study highlights the effects of environmental PE exposure on hermaphroditic protandrous fish.
Collapse
Affiliation(s)
- Meng Xu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, People's Republic of China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, People's Republic of China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, People's Republic of China
| | - Xiaoshan Zhu
- School of Ecology and Environment, Hainan University, Haikou, 570228, People's Republic of China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, 519080, Zhuhai, People's Republic of China.
| |
Collapse
|
2
|
Zhang D, Tian T, Li S, Du J, Lei C, Zhu T, Han L, Song H. Transcriptome analysis of four types of gonadal tissues in largemouth bass ( Micropterus salmoides) to reveal its sex-related genes. Front Genet 2024; 15:1459427. [PMID: 39253718 PMCID: PMC11381392 DOI: 10.3389/fgene.2024.1459427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
The sex determination system of largemouth bass (Micropterus salmoides, LMB) is XX/XY; however, the underlying molecular mechanisms involved in early sex differentiation, gonadal development, and exogenous hormone-induced sex reversal remain unknown. In this study, LMB at 15 days post-hatching (dph) were fed diets containing 20 mg/kg of 17α-methyltestosterone (17α-MT) or 30 mg/kg of 17β-estradiol (17β-E2) for 60 days, respectively. Serum steroid levels, histological observations of the gonads, and identification of sex-specific markers were employed to screen the gonads of 60-day-old normal female fish (XX-F), normal male fish (XY-M), 17β-E2 induced pseudo-female fish (XY-F), and 17α-MT-induced pseudo-male fish (XX-M) for transcriptome sequencing in order to uncover genes and pathway involved in the process of sexual reversal. The results from histology and serum sex steroid hormone analysis showed that both 17α-MT and 17β-E2 were capable of inducing sex reversal of LMB at 15 dph. Transcriptome results revealed a total of 2,753 genes exhibiting differential expression, and the expression pattern of these genes in the gonads of XX-M or XY-F resembled that of normal females or males. The male sex-biased genes that are upregulated in XX-M and downregulated in XY-F are referred to as key genes for male reversal, while the female sex-biased genes that are upregulated in XY-F and downregulated in XX-M are referred to as key genes for female reversal. Finally, 12 differentially expressed genes (DEGs) related to male sex reversal were screened, including star2, cyp17a, cyp11b1, dmrt1, amh, sox9a, katnal1, spata4, spata6l, spata7, spata18 and foxl3. 2 DEGs (foxl2a and cyp19a1b) were found to be associated with female sex reversal. The changes in these genes collectively influence the direction of sex differentiation of LMB. Among them, star2, dmrt1 and cyp19a1b with significantly altered expression levels may play potentially crucial role in the process of gender reversal. The expression patterns of 21 randomly selected genes were verified using qRT-PCR which confirmed the reliability and accuracy of the RNA-seq results. These findings not only enhance our understanding of the molecular basis underlying sex reversal but also provide crucial data support for future breeding research on unisexual LMB.
Collapse
Affiliation(s)
- Dongyun Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
- College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Taihang Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Tao Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Linqiang Han
- Guangdong Province Liangshi Aquaculture Seed Industry, Foshan, Guangdong, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| |
Collapse
|
3
|
Wang W, Huang J, Hu Y, Feng J, Gao D, Fang W, Xu M, Ma C, Fu Z, Chen Q, Liang X, Lu J. Seascapes Shaped the Local Adaptation and Population Structure of South China Coast Yellowfin Seabream (Acanthopagrus latus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:60-73. [PMID: 38147145 DOI: 10.1007/s10126-023-10277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Understanding the genetic composition and regional adaptation of marine species under environmental heterogeneity and fishing pressure is crucial for responsible management. In order to understand the genetic diversity and adaptability of yellowfin seabream (Acanthopagrus latus) along southern China coast, this study was conducted a seascape genome analysis on yellowfin seabream from the ecologically diverse coast, spanning over 1600 km. A total of 92 yellowfin seabream individuals from 15 sites were performed whole-genome resequencing, and 4,383,564 high-quality single nucleotide polymorphisms (SNPs) were called. By conducting a genotype-environment association analysis, 29,951 adaptive and 4,328,299 neutral SNPs were identified. The yellowfin seabream exhibited two distinct population structures, despite high gene flow between sites. The seascape genome analysis revealed that genetic structure was influenced by a variety of factors including salinity gradients, habitat distance, and ocean currents. The frequency of allelic variation at the candidate loci changed with the salinity gradient. Annotation of these loci revealed that most of the genes are associated with osmoregulation, such as kcnab2a, kcnk5a, and slc47a1. These genes are significantly enriched in pathways associated with ion transport including G protein-coupled receptor activity, transmembrane signaling receptor activity, and transporter activity. Overall, our findings provide insights into how seascape heterogeneity affects adaptive evolution, while providing important information for regional management in yellowfin seabream populations.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yan Hu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianxiang Feng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Meng Xu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Chunlei Ma
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhenqiang Fu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Qinglong Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Xuanguang Liang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China.
| |
Collapse
|
4
|
He Z, Chen Q, Xiong J, Chen M, Gao K, Lai B, Ding W, Huang J, Zheng L, Pu Y, Tang Z, Zhang M, Yang D, Yan T. FoxH1 Represses the Promoter Activity of cyp19a1a in the Ricefield Eel ( Monopterus albus). Int J Mol Sci 2023; 24:13712. [PMID: 37762014 PMCID: PMC10531137 DOI: 10.3390/ijms241813712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Forkhead box H1 (FoxH1) is a sexually dimorphic gene in Oreochromis niloticus, Oplegnathus fasciatus, and Acanthopagrus latus, indicating that it is essential for gonadal development. In the present study, the molecular characteristics and potential function of FoxH1 and the activation of the cyp19a1a promoter in vitro were evaluated in Monopterus albus. The levels of foxh1 in the ovaries were three times higher than those in the testes and were regulated by gonadotropins (Follicle-Stimulating Hormone and Human Chorionic Gonadotropin). FoxH1 colocalized with Cyp19a1a in the oocytes and granulosa cells of middle and late vitellogenic follicles. In addition, three FoxH1 binding sites were identified in the proximal promoter of cyp19a1a, namely, FH1 (-871/-860), FH2 (-535/-524), and FH3 (-218/-207). FoxH1 overexpression significantly attenuated the activity of the cyp19a1a promoter in CHO cells, and FH1/2 mutation increased promoter activity. Taken together, these results suggest that FoxH1 may act as an important regulator in the ovarian development of M. albus by repressing cyp19a1a promoter activity, which provides a foundation for the study of FoxH1 function in bony fish reproductive processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Q.C.)
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Q.C.)
| |
Collapse
|
5
|
Wang L, Guan T, Gu J, Zhu C, Pan Z, Wang H, Li J. Comparative transcriptome analysis of gonads in male and female Pseudobagrus ussuriensis (Bagridae, Siluriformes). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101105. [PMID: 37354751 DOI: 10.1016/j.cbd.2023.101105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
As an important aquaculture fish in the Heilongjiang River Basin, Pseudobagrus ussuriensis has high economic value, and all-male culture is beneficial to the economic development of this fish. In this study, the transcriptomes of gonads in males and females were analyzed, and some genes related to gonad development were found. A total of 82,931 unigenes were found (average length 1504 bp, N50 1829 bp). In addition, 4689 differentially expressed genes (DEGs; including 1424 genes upregulated and 3265 genes downregulated in males) were identified. Some genes associated with testis development (such as Dmrt1 and Ropn1l) were significantly upregulated in males, while genes related to ovary development (such as Wnt2, PLC, Cyp19a, ZP3) were significantly downregulated in males, demonstrating that these genes have a crucial influence on gonad development in P. ussuriensis. Some signaling pathways related to gonad development were found, such as the Wnt pathway and oocyte meiosis. The results of RNA-seq obtained in this study provide theoretical data for elucidating the potential mechanism of gonad development of P. ussuriensis and reliable genomic data for the establishment of mono-sex breeding of P. ussuriensis.
Collapse
Affiliation(s)
- Long Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Tianyu Guan
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jieyi Gu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China
| | - Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China
| | - Zhengjun Pan
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China
| | - Hui Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China.
| | - Jiale Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Lin YL, Zhu ZX, Ai CH, Xiong YY, De Liu T, Lin HR, Xia JH. Transcriptome and DNA Methylation Responses in the Liver of Yellowfin Seabream Under Starvation Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:150-160. [PMID: 36445545 DOI: 10.1007/s10126-022-10188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Fish suffer from starvation due to environmental risks such as extreme weather in the wild and due to insufficient feedings in farms. Nutrient problems from short-term or long-term starvation conditions can result in stress-related health problems for fish. Yellowfin seabream (Acanthopagrus latus) is an important marine economic fish in China. Understanding the molecular responses to starvation stress is vital for propagation and culturing yellowfin seabream. In this study, the transcriptome and genome-wide DNA methylation levels in the livers of yellowfin seabream under 14-days starvation stress were analyzed. One hundred sixty differentially expressed genes (DEGs) by RNA-Seq analysis and 737 differentially methylated-related genes by whole genome bisulfite sequencing analysis were identified. GO and KEGG pathway enrichment analysis found that energy metabolism-related pathways such as glucose metabolism and lipid metabolism were in response to starvation. Using bisulfite sequencing PCR, we confirmed the presence of CpG methylation differences within the regulatory region of a DEG ppargc1a in response to 14-days starvation stress. This study revealed the molecular responses of livers in response to starvation stress at the transcriptomic and whole genome DNA methylation levels in yellowfin seabream.
Collapse
Affiliation(s)
- Yi Long Lin
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chun Hui Ai
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ying Ying Xiong
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tong De Liu
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, People's Republic of China.
| |
Collapse
|
7
|
Priscilla L, Malathi E, Moses Inbaraj R. Sex steroid profile during oocyte development and maturation in the intertidal worm Marphysa madrasi (Polychaeta: Eunicidae) from the east coast of India. Gen Comp Endocrinol 2023; 331:114118. [PMID: 36037874 DOI: 10.1016/j.ygcen.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Marphysa madrasi is a commercially valuable maturation diet in crustacean aquaculture. This study presents the first detailed investigation of oogenesis in the intertidal polychaete worm M. madrasi and reports the steroid profile during oocyte growth and development. Oogenesis is extraovarian type I, originating from coelomic epithelial cells, with four stages of development - primary growth, early vitellogenic, late vitellogenic, and maturation. The primary growth phase contains oogonial cells and previtellogenic oocyte clusters in the early, mid, and late stages of development form a dispersed ovary attached to blood vessels. The late previtellogenic oocytes detach from the ovary at the onset of vitellogenesis. The detached oocytes complete vitellogenesis and final maturation in the coelomic fluid as solitary free-floating cells without any connection with follicle cells. The worms display asynchronous reproduction with a heterogeneous population of developing oocytes. Steroid extracts from the polychaete homogenates in different stages of oogenesis were identified by HPLC and confirmed by LC-MS/MS. In M. madrasi, two vertebrate-type steroids, pregnenolone (P5) and 17α-hydroxyprogesterone (17-OHP) were detected and quantified. The P5 levels were low in immature worms but increased significantly by ∼ 8.3-fold in the previtellogenic stage and peaked during oocyte maturation. 17-OHP levels were low in immature worms but gradually increase as the oogenesis progress to the primary growth and early vitellogenic phase, with a significant increase (p < 0.001) during the late vitellogenic phase. Although an increase in the concentration of P5 and 17-OHP during vitellogenesis and maturation of oocytes points to a possible role in reproduction, the absence of other vertebrate-type steroids in the investigated polychaete signifies a plausible uptake of P5 and 17-OHP from the environment.
Collapse
Affiliation(s)
- Lyndsay Priscilla
- Department of Zoology, Queen Mary's College (Autonomous), Affiliated to the University of Madras, Chennai 600004, Tamil Nadu, India; Endocrinology Unit, Department of Zoology, Madras Christian College, Affiliated to the University of Madras, Chennai, India
| | - E Malathi
- Department of Zoology, Queen Mary's College (Autonomous), Affiliated to the University of Madras, Chennai 600004, Tamil Nadu, India
| | - R Moses Inbaraj
- Endocrinology Unit, Department of Zoology, Madras Christian College, Affiliated to the University of Madras, Chennai, India.
| |
Collapse
|
8
|
Shen X, Yáñez JM, Bastos Gomes G, Poon ZWJ, Foster D, Alarcon JF, Domingos JA. Comparative gonad transcriptome analysis in cobia ( Rachycentron canadum). Front Genet 2023; 14:1128943. [PMID: 37091808 PMCID: PMC10117682 DOI: 10.3389/fgene.2023.1128943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Cobia (Rachycentron canadum) is a species of fish with high commercial potential particularly due to fast growth rates. The evidence of sexual size dimorphism favoring females indicate potential benefits in having a monosex culture. However, the involvement of genetic factors responsible for sexual development and gonadal maintenance that produces phenotypic sex in cobia is largely unknown. Methods: In the present study, we performed transcriptome sequencing of cobia to identify sex-biased significantly differentially expressed genes (DEGs) in testes and ovaries. The reliability of the gonad transcriptome data was validated by qPCR analysis of eight selected significantly differential expressed sex-related candidate genes. Results: This comparative gonad transcriptomic analysis revealed that 7,120 and 4,628 DEGs are up-regulated in testes or ovaries, respectively. Further functional annotation analyses identified 76 important candidate genes involved in sex determination cascades or sex differentiation, including 42 known testis-biased DEGs (dmrt1, amh and sox9 etc.), and 34 known ovary-biased DEGs (foxl2, sox3 and cyp19a etc.). Moreover, eleven significantly enriched pathways functionally related to sex determination and sex differentiation were identified, including Wnt signaling pathway, oocyte meiosis, the TGF-beta signaling pathway and MAPK signaling pathway. Conclusion: This work represents the first comparative gonad transcriptome study in cobia. The putative sex-associated DEGs and pathways provide an important molecular basis for further investigation of cobia's sex determination, gonadal development as well as potential control breeding of monosex female populations for a possible aquaculture setting.
Collapse
Affiliation(s)
- Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
- *Correspondence: Xueyan Shen, ; Jose A. Domingos,
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Giana Bastos Gomes
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | | | | | | | - Jose A. Domingos
- Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
- *Correspondence: Xueyan Shen, ; Jose A. Domingos,
| |
Collapse
|
9
|
Chiang VSC, DeRosa H, Park JH, Hunter RG. The Role of Transposable Elements in Sexual Development. Front Behav Neurosci 2022; 16:923732. [PMID: 35874645 PMCID: PMC9301316 DOI: 10.3389/fnbeh.2022.923732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Up to 50% of most mammalian genomes are made up of transposable elements (TEs) that have the potential to mobilize around the genome. Despite this prevalence, research on TEs is only beginning to gain traction within the field of neuroscience. While TEs have long been regarded as "junk" or parasitic DNA, it has become evident that they are adaptive DNA and RNA regulatory elements. In addition to their vital role in normal development, TEs can also interact with steroid receptors, which are key elements to sexual development. In this review, we provide an overview of the involvement of TEs in processes related to sexual development- from TE activity in the germline to TE accumulation in sex chromosomes. Moreover, we highlight sex differences in TE activity and their regulation of genes related to sexual development. Finally, we speculate on the epigenetic mechanisms that may govern TEs' role in sexual development. In this context, we emphasize the need to further the understanding of sexual development through the lens of TEs including in a variety of organs at different developmental stages, their molecular networks, and evolution.
Collapse
Affiliation(s)
| | | | | | - Richard G. Hunter
- College of Liberal Arts, Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
10
|
Guan WZ, Jiang K, Lai XL, Dong YT, Qiu GF. Comprehensive Transcriptome Analysis of Gonadal and Somatic Tissues for Identification of Sex-Related Genes in the Largemouth Bass Micropterus salmoides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:588-598. [PMID: 35384611 DOI: 10.1007/s10126-022-10127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Largemouth bass (Micropterus salmoides) is an economically important fish. It can spawn many times during a breeding season, and there are no obvious morphological characteristics to distinguish male and female juvenile fish. So far, little is known about the genes regulating their sexual development in this species. Here, we performed RNA sequencing (RNA-Seq) analysis of the testis, ovary, and somatic tissue to identify sex-related genes in the largemouth bass. A total of 51,672 unigenes were obtained via the transcriptome analysis, and 5900 differential expression genes (DEGs), including 3028 up-regulated and 2872 down-regulated DEGs, were obtained in the somatic tissue, testis, and ovary. DEGs were retrieved by making comparisons: somatic tissue vs testis (1733-up and 1382-down), testis vs ovary (841-up and 807-down), and ovary vs somatic tissue (454-up and 683-down). Finally, functional annotation identified 22 key sex-related DEGs, including 13 testis-biased DEGs (dmrt1, cyp11b1, sox9, spata4, spata22, spata17, fshr, fem-1a, wt1, daz1, amh, vasa, and piwi1) and 9 ovary-biased DEGs (foxl2, gdf9, zp3, sox3, cyp19a, bmp15, fem-1b, fig. la, and piwi2). This result was further confirmed by the tissue expression detection via RT-PCR and RT-qPCR. Protein-protein interacting (PPI) network analysis revealed that the testis-specific dmrt1 interacts directly with the testis-biased DEGs (cyp11b1 and spata4) and the ovary-biased DEGs (foxl2, gdf9, zp3, sox3, cyp19a, and bmp15), suggesting that the dmrt1 as a sex-determining gene can play a dual role through inducing the testis-biased DEGs and inhibiting the ovary-biased DEGs during the testicular development. Our present results provide useful molecular data for a better understanding of sexual development in the largemouth bass.
Collapse
Affiliation(s)
- Wen-Zhi Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of AgricultureShanghai Engineering Research Center of AquaculturePudong New Area, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Zhejiang, China
| | - Kai Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of AgricultureShanghai Engineering Research Center of AquaculturePudong New Area, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Xing-Lin Lai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of AgricultureShanghai Engineering Research Center of AquaculturePudong New Area, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Yao-Ting Dong
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of AgricultureShanghai Engineering Research Center of AquaculturePudong New Area, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Gao-Feng Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of AgricultureShanghai Engineering Research Center of AquaculturePudong New Area, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China.
| |
Collapse
|
11
|
Tseng PW, Wu GC, Kuo WL, Tseng YC, Chang CF. The Ovarian Transcriptome at the Early Stage of Testis Removal-Induced Male-To-Female Sex Change in the Protandrous Black Porgy Acanthopagrus schlegelii. Front Genet 2022; 13:816955. [PMID: 35401660 PMCID: PMC8986339 DOI: 10.3389/fgene.2022.816955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike gonochoristic fishes, sex is fixed after gonadal differentiation (primary sex determination), and sex can be altered in adults (secondary sex determination) of hermaphroditic fish species. The secondary sex determination of hermaphroditic fish has focused on the differences between testicular tissue and ovarian tissue during the sex change process. However, comprehensive studies analyzing ovarian tissue or testicular tissue independently have not been performed. Hermaphroditic black porgy shows a digonic gonad (ovarian tissue with testicular tissue separated by connective tissue). Protandrous black porgy has stable maleness during the first two reproductive cycles (<2 years old), and approximately 50% enter femaleness (natural sex change) during the third reproductive cycle. Precocious femaleness is rarely observed in the estradiol-17β (E2)-induced female phase (oocytes maintained at the primary oocyte stage), and a reversible female-to-male sex change is found after E2 is withdrawn in <2-year-old fish. However, precocious femaleness (oocytes entering the vitellogenic oocyte stage) is observed in testis-removed fish in <2-year-old fish. We used this characteristic to study secondary sex determination (femaleness) in ovarian tissue via transcriptomic analysis. Cell proliferation analysis showed that BrdU (5-bromo-2′-deoxyuridine)-incorporated germline cells were significantly increased in the testis-removed fish (female) compared to the control (sham) fish (male) during the nonspawning season (2 months after surgery). qPCR analysis showed that there were no differences in pituitary-releasing hormones (lhb and gtha) in pituitary and ovarian steroidogenesis-related factors (star, cyp11a1, hsd3b1, and cyp19a1a) or female-related genes (wnt4a, bmp15, gdf9, figla, and foxl2) in ovarian tissues between intact and testis-removed fish (2 months after surgery). Low expression of pituitary fshb and ovarian cyp17a1 was found after 2 months of surgery. However, we did find small numbers of genes (289 genes) showing sexual fate dimorphic expression in both groups by transcriptomic analysis (1 month after surgery). The expression profiles of these differentially expressed genes were further examined by qPCR. Our present work identified several candidate genes in ovarian tissue that may be involved in the early period of secondary sex determination (femaleness) in black porgy. The data confirmed our previous suggestion that testicular tissue plays an important role in secondary sex determination in protandrous black porgy.
Collapse
Affiliation(s)
- Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| | - Wei-Lun Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organism Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| |
Collapse
|
12
|
Lin G, Li S, Huang J, Gao D, Lu J. Hypoosmotic stress induced functional alternations of intestinal barrier integrity, inflammatory reactions, and neurotransmission along gut-brain axis in the yellowfin seabream (Acanthopagrus latus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1725-1738. [PMID: 34480680 DOI: 10.1007/s10695-021-01011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The gut-brain axis plays a major role in multiple metabolic regulation processes, but studies regarding its responses to environmental stress in fish are still limited. In this study, we performed transcriptome sequencing analysis and enzyme-linked immunosorbent assay (ELISA) in yellowfin seabream (Acanthopagrus latus) exposed to environments with different water salinity (freshwater: 0 ppt; low-saline water: 3 ppt; brackish water: 6 ppt). According to transcriptome analysis, 707 and 1477 genes were identified as differentially expressed genes (DEGs) between freshwater and brackish water treatments in the brain and gut, respectively. Brain DEGs were significantly enriched into a set of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with signal transduction, most of which were downregulated. Gut DEGs were enriched into a neurotransmission-relevant KEGG pathway tryptophan metabolism, and the downregulated DEGs were enriched into the KEGG pathway focal adhesion. ELISA demonstrated significant physiological responses of the brain and gut across treatments, as determined by the concentrations of tight junction protein ZO-2, interleukin 1β, and serotonin. Under hypoosmotic stress, the functions of the gut-brain axis are altered via impairment of intestinal barrier integrity, by disturbance of gut-brain neurotransmission, and through tissue-damaging inflammatory reactions. Our work identified candidate genes which showed significantly differential expression in the gut-brain axis when yellowfin seabream encountered hypoosmotic stress, which could shed lights on the understanding of the potential osmotic regulation mechanisms of the gut-brain axis in teleost.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
13
|
Zhong Z, Ao L, Wang Y, Wang S, Zhao L, Ma S, Jiang Y. Comparison of differential expression genes in ovaries and testes of Pearlscale angelfish Centropyge vrolikii based on RNA-Seq analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1565-1583. [PMID: 34415453 DOI: 10.1007/s10695-021-00977-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Pearlscale angelfish Centropyge vrolikii is a kind of protogynous hermaphrodite fish with a natural sexual reversion. Under appropriate social conditions, a female fish can transform into a male fish spontaneously. It is an important prerequisite for artificial breeding to understand the process of its gonadal development and sexual reversion. Gonadal development is regulated by many sex-related genes. In this study, we used unreferenced RNA-Seq technology to sequence the ovary at the perinucleolus stage (OII), ovary at the yolk vesicle stage (OIV),IV and testis (T), respectively; screened the gonadal differential expression genes (DEGs); and analyzed the expression of these genes in different developmental stages of ovary and different sex gonads. The results showed that a total of 142,589 all-unigene samples were assembled, and gene annotation was performed by COG, GO, KEGG, KOG, Pfam, Swissprot, eggNOG, and NR functional database. Comparative analysis revealed that there were 1919 genes that were up-regulated and 1289 genes were down-regulated in comparison to OIV vs OII, while there were 3653 genes that were up-regulated and 2874 genes were down-regulated in comparison of OIV vs T, there were 3345 genes that were up-regulated and 2995 genes were down-regulated in comparison of the OII vs the T. At the same time, the results verified by RT-qPCR were consistent with the variation trend of transcriptome data. Among the results, amh, sox9b, dmrt1, dmrt2, cyp11a, cyp17a, and cyp19a were significantly expressed in the testes, while sox3, sox4, sox11, sox17, and hsd3b7 were significantly expressed in the ovaries. And, the expression of the amh, sox9b, dmrt2, and dmrt1 were low in the OII and OIV, while significantly increased during the ovotestis in the hermaphroditic period (OT), and finally reached the highest level in pure testis after sex reversal. The expression of sox3, sox4, hsd3b7, sox11, and sox17 was significantly reduced during the hermaphroditic period (OT). These results suggested that these genes may play an important role in the process of sex reversal. This study is helpful to further understand the molecular regulation mechanism of gonadal development and sexual reversion in Pearlscale angelfish and also provide important clues for future studies.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lulu Ao
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Shuhong Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Liping Zhao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Senwei Ma
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China.
| |
Collapse
|
14
|
Pan C, Gao C, Chen T, Chen X, Yang C, Zeng D, Feng P, Jiang W, Peng M. The complete mitochondrial genome of yellowfin seabream, Acanthopagrus latus (Percoiformes, Sparidae) from Beibu Bay. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1313-1314. [PMID: 33855186 PMCID: PMC8018338 DOI: 10.1080/23802359.2021.1907804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The yellowfin seabream, Acanthopagrus latus Houttuyn 1782, is a commercially and ecologically important species and a good model for studies of sexual differentiation. In this study, the complete mitochondrial genome of A. latus has been determined, which is 16,635 base pairs (54.3% A + T content) in length and consists of 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and a 948 bp D-loop region. The phylogenetic analyses showed that A. latus has a close relationship with Acanthopagrus schlegelii Bleeker 1854.
Collapse
Affiliation(s)
- Chuanyan Pan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Chongmin Gao
- Guangxi Agricultural Vocational College, Nanning, China
| | - Tao Chen
- Guangxi Agricultural Vocational College, Nanning, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Weiming Jiang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
15
|
Li S, Lin G, Fang W, Gao D, Huang J, Xie J, Lu J. Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream ( Acanthopagrus Latus). Int J Mol Sci 2020; 21:E5690. [PMID: 32784462 PMCID: PMC7461063 DOI: 10.3390/ijms21165690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Yellowfin seabream (Acanthopagrus latus) is a commercially important fish in Asian coastal waters. Although natural sex reversal has been described in yellowfin seabream, the mechanisms underlying sexual differentiation and gonadal development in this species remain unclear. MicroRNAs (miRNAs) have been shown to play crucial roles in gametogenesis and gonadal development. Here, two libraries of small RNAs, constructed from the testes and ovaries of yellowfin seabream, were sequenced. Across both gonads, we identified 324 conserved miRNAs and 92 novel miRNAs: 67 ovary-biased miRNAs, including the miR-200 families, the miR-29 families, miR-21, and miR-725; and 88 testis-biased miRNAs, including the let-7 families, the miR-10 families, miR-7, miR-9, and miR-202-3p. GO (Gene Ontology) annotations and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses of putative target genes indicated that many target genes were significantly enriched in the steroid biosynthesis pathway and in the reproductive process. Our integrated miRNA-mRNA analysis demonstrated a putative negatively correlated expression pattern in yellowfin seabream gonads. This study profiled the expression patterns of sex-biased miRNAs in yellowfin seabream gonads, and provided important molecular resources that will help to clarify the miRNA-mediated post-transcriptional regulation of sexual differentiation and gonadal development in this species.
Collapse
Affiliation(s)
- Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
- Southern Marine Sciences and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|