1
|
Qiao P, Yue C, Peng W, Liu K, Huo S, Zhang D, Chai Y, Qi J, Sun Z, Gao GF, Wu G, Liu J. Precise motif and cross-presentation of coronavirus peptides by feline MHC class I: implications for the mild infection of SARS-CoV-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:115-129. [PMID: 40073263 DOI: 10.1093/jimmun/vkae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 03/14/2025]
Abstract
As one of the earliest identified susceptible animals for the SARS-CoV-2, cats are also the vulnerable hosts for feline coronaviruses, ie feline enteric coronavirus (FECV). Here, to understand the cross-presentation of coronavirus-derived peptides by cat major histocompatibility complex molecule feline leucocyte antigen (FLA) class I, unpredictable natural peptide motifs presented by FLA-K*00701 and FLA-E*00301 were identified through peptide elution and further confirmed by the structural determination of the 2 FLA class I molecules. Based on these precise motifs of FLA class I peptides, the atlas of cross-presenting peptides from different coronaviruses in cats were sketched with 3 hotspots in C-terminal half of ORF1ab protein. The possibility of cross-presentation is further supported by the similar conformation of the corresponding peptides KP-CoV-9 (RSFIEDLLF) and KM-FECV-9 (RSAVEDLLF) from the 2 coronaviruses presented by FLA-K*00701. Our findings provide insights into the understanding of the cross-presentation of peptides from SARS-CoV-2 and feline coronaviruses FECV and the development of universal vaccine for coronaviruses.
Collapse
Affiliation(s)
- Peiwen Qiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiyu Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuting Huo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Di Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Guizhen Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 100021, China
| |
Collapse
|
2
|
Lyn Fortier A, Pritchard JK. The Primate Major Histocompatibility Complex: An Illustrative Example of Gene Family Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613318. [PMID: 39345418 PMCID: PMC11429698 DOI: 10.1101/2024.09.16.613318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Gene families are groups of evolutionarily-related genes. One large gene family that has experienced rapid evolution is the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity. Across the ~60 million year history of the primates, some MHC genes have turned over completely, some have changed function, some have converged in function, and others have remained essentially unchanged. Past work has typically focused on identifying MHC alleles within particular species or comparing gene content, but more work is needed to understand the overall evolution of the gene family across species. Thus, despite the immunologic importance of the MHC and its peculiar evolutionary history, we lack a complete picture of MHC evolution in the primates. We readdress this question using sequences from dozens of MHC genes and pseudogenes spanning the entire primate order, building a comprehensive set of gene and allele trees with modern methods. Overall, we find that the Class I gene subfamily is evolving much more quickly than the Class II gene subfamily, with the exception of the Class II MHC-DRB genes. We also pay special attention to the often-ignored pseudogenes, which we use to reconstruct different events in the evolution of the Class I region. We find that despite the shared function of the MHC across species, different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response. Our trees and extensive literature review represent the most comprehensive look into MHC evolution to date.
Collapse
Affiliation(s)
- Alyssa Lyn Fortier
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| | - Jonathan K. Pritchard
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| |
Collapse
|
3
|
Roved J. MHCtools 1.5: Analysis of MHC Sequencing Data in R. Methods Mol Biol 2024; 2809:275-295. [PMID: 38907904 DOI: 10.1007/978-1-0716-3874-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The genes of the major histocompatibility complex (MHC) play a vital role in the vertebrate immune system and have attracted considerable interest in evolutionary biology. While the MHC has been characterized in detail in humans (human leukocyte antigen, HLA) and in model organisms such as the mouse, studies in non-model organisms often lack prior knowledge about structure, genetic variability, and evolutionary properties of this locus. MHC genotyping in non-model species commonly relies on PCR-based amplicon sequencing, and while several published protocols facilitate generation of MHC sequence data, there is a lack of transparent and standardized tools for downstream data analysis.Here, I present the R package MHCtools version 1.5, which contains 15 tools that (i) assist accurate MHC genotyping from high-throughput amplicon sequencing data, and provide standardized methods to analyze (ii) MHC diversity, (iii) MHC supertypes, and (iv) MHC haplotypes.I hope that MHCtools will be helpful in future studies of the MHC in non-model species and that it may help to advance our understanding of the important roles of the MHC in ecology and evolution.
Collapse
Affiliation(s)
- Jacob Roved
- Section for Molecular Ecology and Evolution, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Yuan J, Wang G, Zhao L, Kitchener AC, Sun T, Chen W, Huang C, Wang C, Xu X, Wang J, Lu H, Xu L, Jiangzuo Q, Murphy WJ, Wu D, Li G. How genomic insights into the evolutionary history of clouded leopards inform their conservation. SCIENCE ADVANCES 2023; 9:eadh9143. [PMID: 37801506 PMCID: PMC10558132 DOI: 10.1126/sciadv.adh9143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Clouded leopards (Neofelis spp.), a morphologically and ecologically distinct lineage of big cats, are severely threatened by habitat loss and fragmentation, targeted hunting, and other human activities. The long-held poor understanding of their genetics and evolution has undermined the effectiveness of conservation actions. Here, we report a comprehensive investigation of the whole genomes, population genetics, and adaptive evolution of Neofelis. Our results indicate the genus Neofelis arose during the Pleistocene, coinciding with glacial-induced climate changes to the distributions of savannas and rainforests, and signatures of natural selection associated with genes functioning in tooth, pigmentation, and tail development, associated with clouded leopards' unique adaptations. Our study highlights high-altitude adaptation as the main factor driving nontaxonomic population differentiation in Neofelis nebulosa. Population declines and inbreeding have led to reduced genetic diversity and the accumulation of deleterious variation that likely affect reproduction of clouded leopards, highlighting the urgent need for effective conservation efforts.
Collapse
Affiliation(s)
- Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Guiqiang Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH9 3PX, UK
| | - Ting Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chen Wang
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Huimeng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qigao Jiangzuo
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| |
Collapse
|
5
|
Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward? Front Vet Sci 2023; 10:1176772. [PMID: 37180067 PMCID: PMC10168294 DOI: 10.3389/fvets.2023.1176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.
Collapse
Affiliation(s)
| | | | | | | | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Dawkins RL, Lloyd SS. Commentary: Conserved polymorphic sequences protect themselves for future challenges. Front Genet 2022; 13:993944. [DOI: 10.3389/fgene.2022.993944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
|
7
|
Roved J, Hansson B, Stervander M, Hasselquist D, Westerdahl H. MHCtools - an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Mol Ecol Resour 2022; 22:2775-2792. [PMID: 35587892 PMCID: PMC9543685 DOI: 10.1111/1755-0998.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC) plays a central role in the vertebrate adaptive immune system and has been of long-term interest in evolutionary biology. While several protocols have been developed for MHC genotyping, there is a lack of transparent and standardized tools for downstream analysis of MHC data. Here, we present the R package MHCtools and demonstrate the use of its functions to (i) assist accurate MHC genotyping from high-throughput amplicon-sequencing data, (ii) infer functional MHC supertypes using bootstrapped clustering analysis, (iii) identify segregating MHC haplotypes from family data, and (iv) analyse functional and genetic distances between MHC sequences. We employed MHCtools to analyse MHC class I (MHC-I) amplicon data of 559 great reed warblers (Acrocephalus arundinaceus). We identified 390 MHC-I alleles which clustered into 14 functional supertypes. A phylogenetic analysis and analyses of positive selection suggested that the MHC-I alleles belonged to several distinct functional groups. We furthermore identified 107 segregating haplotypes among 116 families, and found substantial variation in diversity with 4-21 MHC-I alleles and 3-13 MHC-I supertypes per haplotype. Finally, we show that the great reed warbler haplotypes harboured combinations of MHC-I supertypes with greater functional divergence than observed in simulated populations of possible haplotypes, a result that is in accordance with the divergent allele advantage hypothesis. Our study demonstrates the power of MHCtools to support genotyping and analysis of MHC in non-model species, which we hope will encourage broad implementation among researchers in MHC genetics and evolution.
Collapse
Affiliation(s)
- Jacob Roved
- GLOBE Institute, Section for Evolutionary Genomics, University of Copenhagen, 1350, Copenhagen K, Denmark
| | - Bengt Hansson
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Martin Stervander
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Ecology Building, 223 62, Lund, Sweden.,Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden.,Bird Group, Department of Life Sciences, Natural History Museum, Akeman Street, Hertfordshire, HP23 6AP, UK
| | - Dennis Hasselquist
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Ecology Building, 223 62, Lund, Sweden.,Bird Group, Department of Life Sciences, Natural History Museum, Akeman Street, Hertfordshire, HP23 6AP, UK
| | - Helena Westerdahl
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Ecology Building, 223 62, Lund, Sweden
| |
Collapse
|
8
|
Plasil M, Futas J, Jelinek A, Burger PA, Horin P. Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids. Front Genet 2022; 13:829891. [PMID: 35309138 PMCID: PMC8924298 DOI: 10.3389/fgene.2022.829891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022] Open
Abstract
This review summarizes the current knowledge on the major histocompatibility complex (MHC) of the family Felidae. This family comprises an important domestic species, the cat, as well as a variety of free-living felids, including several endangered species. As such, the Felidae have the potential to be an informative model for studying different aspects of the biological functions of MHC genes, such as their role in disease mechanisms and adaptation to different environments, as well as the importance of genetic diversity for conservation issues in free-ranging or captive populations. Despite this potential, the current knowledge on the MHC in the family as a whole is fragmentary and based mostly on studies of the domestic cat and selected species of big cats. The overall structure of the domestic cat MHC is similar to other mammalian MHCs following the general scheme "centromere-MHC class I-MHC class III-MHC class II" with some differences in the gene contents. An unambiguously defined orthologue of the non-classical class I HLA-E gene has not been identified so far and the class II DQ and DP genes are missing or pseudogenized, respectively. A comparison with available genomes of other felids showed a generally high level of structural and sequence conservation of the MHC region. Very little and fragmentary information on in vitro and/or in vivo biological functions of felid MHC genes is available. So far, no association studies have indicated effects of MHC genetic diversity on a particular disease. No information is available on the role of MHC class I molecules in interactions with Natural Killer (NK) cell receptors or on the putative evolutionary interactions (co-evolution) of the underlying genes. A comparison of complex genomic regions encoding NK cell receptors (the Leukocyte Receptor Complex, LRC and the Natural Killer Cell Complex, NKC) in the available felid genomes showed a higher variability in the NKC compared to the LRC and the MHC regions. Studies of the genetic diversity of domestic cat populations and/or specific breeds have focused mainly on DRB genes. Not surprisingly, higher levels of MHC diversity were observed in stray cats compared to pure breeds, as evaluated by DRB sequencing as well as by MHC-linked microsatellite typing. Immunogenetic analysis in wild felids has only been performed on MHC class I and II loci in tigers, Namibian leopards and cheetahs. This information is important as part of current conservation tasks to assess the adaptive potential of endangered wild species at the human-wildlife interface, which will be essential for preserving biodiversity in a functional ecosystem.
Collapse
Affiliation(s)
- Martin Plasil
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jan Futas
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - April Jelinek
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, VIA, Vienna, Austria
| | - Petr Horin
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
9
|
High-resolution characterization of the structural features and genetic variation of six feline leukocyte antigen class I loci via single molecule, real-time (SMRT) sequencing. Immunogenetics 2021; 73:381-393. [PMID: 34175985 DOI: 10.1007/s00251-021-01221-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Of the 12 full-length feline leukocyte antigen class I (FLAI) loci, 3 are presumed to be classical: FLAI-E, FLAI-H, and FLAI-K. As diversity is a class Ia hallmark, multi-allelism is an important surrogate supporting a classical designation, in the absence of direct demonstration of T-cell restriction. Conversely, limited polymorphism at an expressed locus suggests regulation of immune effectors with invariant receptors, and non-classical status. FLAI-A, FLAI-J, FLAI-L, and FLAI-O are putative class Ib genes in cats. For both classes, identifying prevalent variants across outbred populations can illuminate specific genotypes to be prioritized for immune studies, as shared alleles direct shared responses. Since variation is concentrated in exons 2 and 3, which encode the antigen-binding domains, partial-length cloning/sequencing can be used for allele discovery, but is laborious and occasionally ambiguous. Here we develop a targeted approach to FLAI genotyping, using the single-molecule real-time (SMRT) platform, which allows full-length (3.4-kb) reads without assembly. Consensus sequences matched full-length Sanger references. Thirty-one new class Ia genes were found in 17 cats. Alleles segregated strongly by loci, and the origins of formerly difficult-to-assign sequences were resolved. Although not targeted, FLAI-L and FLAI-J, and the pseudogene FLAI-F, were also returned. Eighteen class Ib alleles were identified. Diversity was restricted and outside hypervariable regions. Both class Ib genes were transcriptionally active. Novel alternative splicing of FLAI-L was observed. SMRT sequencing of FLAI amplicons is useful for full-length genotyping at feline class Ia loci. High-throughput sequencing could allow highly accurate allele surveys in large cat cohorts.
Collapse
|