1
|
Ms S, Banerjee S, D'Mello SR, Dastidar SG. Amyotrophic Lateral Sclerosis: Focus on Cytoplasmic Trafficking and Proteostasis. Mol Neurobiol 2025:10.1007/s12035-025-04831-7. [PMID: 40180687 DOI: 10.1007/s12035-025-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease characterized by the pathological loss of upper and lower motor neurons. Whereas most ALS cases are caused by a combination of environmental factors and genetic susceptibility, in a relatively small proportion of cases, the disorder results from mutations in genes that are inherited. Defects in several different cellular mechanisms and processes contribute to the selective loss of motor neurons (MNs) in ALS. Prominent among these is the accumulation of aggregates of misfolded proteins or peptides which are toxic to motor neurons. These accumulating aggregates stress the ability of the endoplasmic reticulum (ER) to function normally, cause defects in the transport of proteins between the ER and Golgi, and impair the transport of RNA, proteins, and organelles, such as mitochondria, within axons and dendrites, all of which contribute to the degeneration of MNs. Although dysfunction of a variety of cellular processes combines towards the pathogenesis of ALS, in this review, we focus on recent advances concerning the involvement of defective ER stress, vesicular transport between the ER and Golgi, and axonal transport.
Collapse
Affiliation(s)
- Shrilaxmi Ms
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saradindu Banerjee
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Santosh R D'Mello
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- College of Arts and Sciences, Louisiana State University, Shreveport, LA, 71115, USA.
| | - Somasish Ghosh Dastidar
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Cincotta MC, Walker RH. Recent advances in non-Huntington's disease choreas. Parkinsonism Relat Disord 2024; 122:106045. [PMID: 38378310 DOI: 10.1016/j.parkreldis.2024.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Chorea is primarily due to an imbalance of basal ganglia output pathways, often due to dysfunction or degeneration of the caudate nucleus and putamen, and can be due to many causes. METHODS We reviewed the recent literature to identify newly-recognized causes of chorea, including auto-immune, metabolic, and genetic. We also focused upon developments in mechanisms relating to underlying pathophysiology of certain genetic choreas and advances in therapeutics. RESULTS Novel autoantibodies continue to be identified as causes of chorea. Both COVID-19 infection and vaccination are reported to result rarely in chorea, although in some cases causality is not clearly established. Advances in genetic testing continue to find more causes of chorea, and to expand the phenotype of known genetic disorders. Deep brain stimulation can be successful in certain circumstances. CONCLUSION Our understanding of mechanisms underlying this movement disorder continues to advance, however much remains to be elucidated.
Collapse
Affiliation(s)
- Molly C Cincotta
- Department of Neurology, Temple University, Philadelphia, PA, USA
| | - Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Neurology, Mount Sinai School of Medicine, New York City, NY, USA.
| |
Collapse
|
3
|
Sellier C, Corcia P, Vourc'h P, Dupuis L. C9ORF72 hexanucleotide repeat expansion: From ALS and FTD to a broader pathogenic role? Rev Neurol (Paris) 2024; 180:417-428. [PMID: 38609750 DOI: 10.1016/j.neurol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
The major gene underlying monogenic forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is C9ORF72. The causative mutation in C9ORF72 is an abnormal hexanucleotide (G4C2) repeat expansion (HRE) located in the first intron of the gene. The aim of this review is to propose a comprehensive update on recent developments on clinical, biological and therapeutics aspects related to C9ORF72 in order to highlight the current understanding of genotype-phenotype correlations, and also on biological machinery leading to neuronal death. We will particularly focus on the broad phenotypic presentation of C9ORF72-related diseases, that goes well beyond the classical phenotypes observed in ALS and FTD patients. Last, we will comment the possible therapeutical hopes for patients carrying a C9ORF72 HRE.
Collapse
Affiliation(s)
- C Sellier
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France
| | - P Corcia
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Centre constitutif de coordination SLA, CHU de Bretonneau, 2, boulevard Tonnelle, 37044 Tours cedex 1, France
| | - P Vourc'h
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Service de biochimie et biologie moléculaire, CHU de Tours, Tours, France
| | - L Dupuis
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France.
| |
Collapse
|
4
|
Tang L, Chen L, Liu X, He J, Ma Y, Zhang N, Fan D. The repeat length of C9orf72 is associated with the survival of amyotrophic lateral sclerosis patients without C9orf72 pathological expansions. Front Neurol 2022; 13:939775. [PMID: 35989899 PMCID: PMC9381700 DOI: 10.3389/fneur.2022.939775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo explore whether the repeat lengths of the chromosome 9 open reading frame 72 (C9orf72) gene and the ataxin-2 (ATXN2) gene in amyotrophic lateral sclerosis (ALS) patients without C9orf72 repeat expansions confer a risk of ALS or survival disadvantages in ALS.MethodsWe screened a hospital-based cohort of Chinese patients with sporadic ALS without C9orf72 repeat expansions and neurologically healthy controls for C9orf72 GGGGCC and AXTN2 CAG repeat length to compare the frequency of possible detrimental length alleles using several thresholds. Furthermore, the clinical features of ALS were compared between patients with ALS subgroups using different length thresholds of maximum C9orf72 and ATXN2 repeat alleles, such as sex, age of onset, diagnostic delay, and survival.ResultsOverall, 879 sporadic patients with ALS and 535 controls were included and the repeat lengths of the C9orf72 and ATXN2 were both detected. We found significant survival differences in patients using a series of C9orf72 repeat length thresholds from 2 to 5, among which the most significant difference was at the cutoff value of 2 (repeats 2 vs. >2: median survival 67 vs. 55 months, log-rank p = 0.032). Furthermore, Cox regression analysis revealed the role of age of onset [hazard ratio (HR) 1.04, 95% CI 1.03–1.05, p < 0.001], diagnostic delay (0.95, 0.94–0.96, p < 0.001), and carrying C9orf72 repeat length of 2 (0.72, 0.59–0.89, p = 0.002) in the survival of patients without C9orf72 repeat expansions. In addition, bulbar onset was associated with poorer survival when the patients carried the maximum C9orf72 repeat allele over 2 (1.81, 1.32–2.48, p < 0.001). However, no survival difference was found when applying a series of continuous cutoff values of ATXN2 or stratified by C9orf72 repeats of 2.ConclusionThe length of 2 in the maximum C9orf72 repeat allele was identified to be associated with favorable survival in ALS patients without C9orf72 repeat expansions. Our findings from the clinical setting implicated the possible cutoff definition of detrimental C9orf72 repeats, which should be helpful in the understanding of genetics in ALS and in clinical genetic counseling.
Collapse
Affiliation(s)
- Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Yan Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan
| |
Collapse
|